RNA secondary structure and nucleotide composition of the conserved hallmark sequence of Leishmania SIDER2 retroposons are essential for endonucleolytic cleavage and mRNA degradation

We have reported previously that Short Interspersed Degenerate Retroposons of the SIDER2 subfamily, largely located within 3'UTRs of Leishmania transcripts, promote rapid turnover of mRNAs through endonucleolytic cleavage within the highly conserved second tandem 79-nt hallmark sequence (79-nt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-07, Vol.12 (7), p.e0180678
Hauptverfasser: Azizi, Hiva, Romão, Tatiany P, Santos Charret, Karen, Padmanabhan, Prasad K, de Melo Neto, Osvaldo P, Müller-McNicoll, Michaela, Papadopoulou, Barbara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page e0180678
container_title PloS one
container_volume 12
creator Azizi, Hiva
Romão, Tatiany P
Santos Charret, Karen
Padmanabhan, Prasad K
de Melo Neto, Osvaldo P
Müller-McNicoll, Michaela
Papadopoulou, Barbara
description We have reported previously that Short Interspersed Degenerate Retroposons of the SIDER2 subfamily, largely located within 3'UTRs of Leishmania transcripts, promote rapid turnover of mRNAs through endonucleolytic cleavage within the highly conserved second tandem 79-nt hallmark sequence (79-nt SII). Here, we used site-directed mutagenesis and in silico RNA structural studies to delineate the cis-acting requirements within 79-nt SII for cleavage and mRNA degradation. The putative cleavage site(s) and other nucleotides predicted to alter the RNA secondary structure of 79-nt SII were either deleted or mutated and their effect on mRNA turnover was monitored using a gene reporter system. We found that short deletions of 8-nt spanning the two predicted cleavage sites block degradation of SIDER2-containing transcripts, leading to mRNA accumulation. Furthermore, single or double substitutions of the dinucleotides targeted for cleavage as well as mutations altering the predicted RNA secondary structure encompassing both cleavage sites also prevent mRNA degradation, confirming that these dinucleotides are the bona fide cleavage sites. In line with these results, we show that stage-regulated SIDER2 inactivation correlates with the absence of endonucleolytic cleavage. Overall, these data demonstrate that both cleavage sites within the conserved 79-nt SII as well as RNA folding in this region are essential for SIDER2-mediated mRNA decay, and further support that SIDER2-harboring transcripts are targeted for degradation by endonucleolytic cleavage.
doi_str_mv 10.1371/journal.pone.0180678
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1919495110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498443073</galeid><doaj_id>oai_doaj_org_article_92144055325c405e8346b7c456940097</doaj_id><sourcerecordid>A498443073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-68c7e5414c9a6ba85474837981d598841a45c5a067b2b9e3545a6ac42a782a9d3</originalsourceid><addsrcrecordid>eNqNk1FrFDEQxxdRbK1-A9GAIPhwZ7Kb7CYvQqlVDw4LV_U1zGXn7lJ3kzPJFvvF_HxmvWvpgYLkIWH2N_-Z_SdTFM8ZnbKqYW-v_BAcdNOtdzilTNK6kQ-KY6aqclKXtHp473xUPInxilJRybp-XByVsqGcl_Vx8Wvx-ZRENN61EG5ITGEwaQhIwLXEDaZDn2yLxPh-66NN1jviVyRtxpCLGK6xJRvouh7C9yz0Y0BncETmaOOmB2eBXM7eny9KEjAFn1VyHoFcAmNElyx0ZOUDQdf6XcHuJllD8gmuYb3rpB_bbHEdoIWxh6fFoxV0EZ_t95Pi64fzL2efJvOLj7Oz0_nE1KpMk1qaBgVn3CiolyAFb7isGiVZK5SUnAEXRkC2blkuFVaCC6jB8BIaWYJqq5Pi5U532_mo95ZHzRRTXAnGaCZmO6L1cKW3wWYjbrQHq_8EfFhrCPl_OtSqZJxTIapSmLyjrHi9bAwXteKUqiZrvdtXG5Y9tia7E6A7ED384uxGr_21FoIqJlgWeLUXCD7fREz_aHlPrSF3Zd3KZzHT22j0KVeS84o2Vaamf6HyarG3-e5xZXP8IOHNQUJmEv5Maxhi1LPLxf-zF98O2df32A1ClzbRd8P4DuIhyHegCT7GgKs75xjV48zcuqHHmdH7mclpL-67fpd0OyTVbzgTE3A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919495110</pqid></control><display><type>article</type><title>RNA secondary structure and nucleotide composition of the conserved hallmark sequence of Leishmania SIDER2 retroposons are essential for endonucleolytic cleavage and mRNA degradation</title><source>Electronic Journals Library</source><source>MEDLINE</source><source>PubMed Central(OpenAccess)</source><source>Full-Text Journals in Chemistry (Open access)</source><source>DOAJ Directory of Open Access Journals</source><source>PLoS (Open access)</source><creator>Azizi, Hiva ; Romão, Tatiany P ; Santos Charret, Karen ; Padmanabhan, Prasad K ; de Melo Neto, Osvaldo P ; Müller-McNicoll, Michaela ; Papadopoulou, Barbara</creator><contributor>Mata, Juan</contributor><creatorcontrib>Azizi, Hiva ; Romão, Tatiany P ; Santos Charret, Karen ; Padmanabhan, Prasad K ; de Melo Neto, Osvaldo P ; Müller-McNicoll, Michaela ; Papadopoulou, Barbara ; Mata, Juan</creatorcontrib><description>We have reported previously that Short Interspersed Degenerate Retroposons of the SIDER2 subfamily, largely located within 3'UTRs of Leishmania transcripts, promote rapid turnover of mRNAs through endonucleolytic cleavage within the highly conserved second tandem 79-nt hallmark sequence (79-nt SII). Here, we used site-directed mutagenesis and in silico RNA structural studies to delineate the cis-acting requirements within 79-nt SII for cleavage and mRNA degradation. The putative cleavage site(s) and other nucleotides predicted to alter the RNA secondary structure of 79-nt SII were either deleted or mutated and their effect on mRNA turnover was monitored using a gene reporter system. We found that short deletions of 8-nt spanning the two predicted cleavage sites block degradation of SIDER2-containing transcripts, leading to mRNA accumulation. Furthermore, single or double substitutions of the dinucleotides targeted for cleavage as well as mutations altering the predicted RNA secondary structure encompassing both cleavage sites also prevent mRNA degradation, confirming that these dinucleotides are the bona fide cleavage sites. In line with these results, we show that stage-regulated SIDER2 inactivation correlates with the absence of endonucleolytic cleavage. Overall, these data demonstrate that both cleavage sites within the conserved 79-nt SII as well as RNA folding in this region are essential for SIDER2-mediated mRNA decay, and further support that SIDER2-harboring transcripts are targeted for degradation by endonucleolytic cleavage.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0180678</identifier><identifier>PMID: 28704426</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Base Sequence ; Biology and life sciences ; Cleavage ; Computer Simulation ; Conserved Sequence ; Deactivation ; Decay ; Degradation ; Deoxyribonucleic acid ; DNA ; Folding ; Gene expression ; Genetic aspects ; Genomes ; Genomics ; Hepatitis ; Hepatitis delta virus ; Immunology ; Inactivation ; Infectious diseases ; Leishmania ; Leishmania - genetics ; Messenger RNA ; Models, Molecular ; mRNA turnover ; Mutagenesis, Site-Directed ; Mutation ; Nucleic Acid Conformation ; Nucleotide sequence ; Nucleotides ; Parasitic diseases ; Plasmids ; Protein structure ; Research and Analysis Methods ; Ribonucleic acid ; RNA ; RNA polymerase ; RNA Stability ; RNA, Messenger - chemistry ; RNA, Protozoan - chemistry ; Secondary structure ; Sequence Deletion ; Short Interspersed Nucleotide Elements ; Site-directed mutagenesis</subject><ispartof>PloS one, 2017-07, Vol.12 (7), p.e0180678</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Azizi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Azizi et al 2017 Azizi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-68c7e5414c9a6ba85474837981d598841a45c5a067b2b9e3545a6ac42a782a9d3</citedby><cites>FETCH-LOGICAL-c692t-68c7e5414c9a6ba85474837981d598841a45c5a067b2b9e3545a6ac42a782a9d3</cites><orcidid>0000-0002-6697-9739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5509151/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5509151/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28704426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mata, Juan</contributor><creatorcontrib>Azizi, Hiva</creatorcontrib><creatorcontrib>Romão, Tatiany P</creatorcontrib><creatorcontrib>Santos Charret, Karen</creatorcontrib><creatorcontrib>Padmanabhan, Prasad K</creatorcontrib><creatorcontrib>de Melo Neto, Osvaldo P</creatorcontrib><creatorcontrib>Müller-McNicoll, Michaela</creatorcontrib><creatorcontrib>Papadopoulou, Barbara</creatorcontrib><title>RNA secondary structure and nucleotide composition of the conserved hallmark sequence of Leishmania SIDER2 retroposons are essential for endonucleolytic cleavage and mRNA degradation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We have reported previously that Short Interspersed Degenerate Retroposons of the SIDER2 subfamily, largely located within 3'UTRs of Leishmania transcripts, promote rapid turnover of mRNAs through endonucleolytic cleavage within the highly conserved second tandem 79-nt hallmark sequence (79-nt SII). Here, we used site-directed mutagenesis and in silico RNA structural studies to delineate the cis-acting requirements within 79-nt SII for cleavage and mRNA degradation. The putative cleavage site(s) and other nucleotides predicted to alter the RNA secondary structure of 79-nt SII were either deleted or mutated and their effect on mRNA turnover was monitored using a gene reporter system. We found that short deletions of 8-nt spanning the two predicted cleavage sites block degradation of SIDER2-containing transcripts, leading to mRNA accumulation. Furthermore, single or double substitutions of the dinucleotides targeted for cleavage as well as mutations altering the predicted RNA secondary structure encompassing both cleavage sites also prevent mRNA degradation, confirming that these dinucleotides are the bona fide cleavage sites. In line with these results, we show that stage-regulated SIDER2 inactivation correlates with the absence of endonucleolytic cleavage. Overall, these data demonstrate that both cleavage sites within the conserved 79-nt SII as well as RNA folding in this region are essential for SIDER2-mediated mRNA decay, and further support that SIDER2-harboring transcripts are targeted for degradation by endonucleolytic cleavage.</description><subject>Base Sequence</subject><subject>Biology and life sciences</subject><subject>Cleavage</subject><subject>Computer Simulation</subject><subject>Conserved Sequence</subject><subject>Deactivation</subject><subject>Decay</subject><subject>Degradation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Folding</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hepatitis</subject><subject>Hepatitis delta virus</subject><subject>Immunology</subject><subject>Inactivation</subject><subject>Infectious diseases</subject><subject>Leishmania</subject><subject>Leishmania - genetics</subject><subject>Messenger RNA</subject><subject>Models, Molecular</subject><subject>mRNA turnover</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleotide sequence</subject><subject>Nucleotides</subject><subject>Parasitic diseases</subject><subject>Plasmids</subject><subject>Protein structure</subject><subject>Research and Analysis Methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>RNA Stability</subject><subject>RNA, Messenger - chemistry</subject><subject>RNA, Protozoan - chemistry</subject><subject>Secondary structure</subject><subject>Sequence Deletion</subject><subject>Short Interspersed Nucleotide Elements</subject><subject>Site-directed mutagenesis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1FrFDEQxxdRbK1-A9GAIPhwZ7Kb7CYvQqlVDw4LV_U1zGXn7lJ3kzPJFvvF_HxmvWvpgYLkIWH2N_-Z_SdTFM8ZnbKqYW-v_BAcdNOtdzilTNK6kQ-KY6aqclKXtHp473xUPInxilJRybp-XByVsqGcl_Vx8Wvx-ZRENN61EG5ITGEwaQhIwLXEDaZDn2yLxPh-66NN1jviVyRtxpCLGK6xJRvouh7C9yz0Y0BncETmaOOmB2eBXM7eny9KEjAFn1VyHoFcAmNElyx0ZOUDQdf6XcHuJllD8gmuYb3rpB_bbHEdoIWxh6fFoxV0EZ_t95Pi64fzL2efJvOLj7Oz0_nE1KpMk1qaBgVn3CiolyAFb7isGiVZK5SUnAEXRkC2blkuFVaCC6jB8BIaWYJqq5Pi5U532_mo95ZHzRRTXAnGaCZmO6L1cKW3wWYjbrQHq_8EfFhrCPl_OtSqZJxTIapSmLyjrHi9bAwXteKUqiZrvdtXG5Y9tia7E6A7ED384uxGr_21FoIqJlgWeLUXCD7fREz_aHlPrSF3Zd3KZzHT22j0KVeS84o2Vaamf6HyarG3-e5xZXP8IOHNQUJmEv5Maxhi1LPLxf-zF98O2df32A1ClzbRd8P4DuIhyHegCT7GgKs75xjV48zcuqHHmdH7mclpL-67fpd0OyTVbzgTE3A</recordid><startdate>20170713</startdate><enddate>20170713</enddate><creator>Azizi, Hiva</creator><creator>Romão, Tatiany P</creator><creator>Santos Charret, Karen</creator><creator>Padmanabhan, Prasad K</creator><creator>de Melo Neto, Osvaldo P</creator><creator>Müller-McNicoll, Michaela</creator><creator>Papadopoulou, Barbara</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6697-9739</orcidid></search><sort><creationdate>20170713</creationdate><title>RNA secondary structure and nucleotide composition of the conserved hallmark sequence of Leishmania SIDER2 retroposons are essential for endonucleolytic cleavage and mRNA degradation</title><author>Azizi, Hiva ; Romão, Tatiany P ; Santos Charret, Karen ; Padmanabhan, Prasad K ; de Melo Neto, Osvaldo P ; Müller-McNicoll, Michaela ; Papadopoulou, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-68c7e5414c9a6ba85474837981d598841a45c5a067b2b9e3545a6ac42a782a9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Base Sequence</topic><topic>Biology and life sciences</topic><topic>Cleavage</topic><topic>Computer Simulation</topic><topic>Conserved Sequence</topic><topic>Deactivation</topic><topic>Decay</topic><topic>Degradation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Folding</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hepatitis</topic><topic>Hepatitis delta virus</topic><topic>Immunology</topic><topic>Inactivation</topic><topic>Infectious diseases</topic><topic>Leishmania</topic><topic>Leishmania - genetics</topic><topic>Messenger RNA</topic><topic>Models, Molecular</topic><topic>mRNA turnover</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleotide sequence</topic><topic>Nucleotides</topic><topic>Parasitic diseases</topic><topic>Plasmids</topic><topic>Protein structure</topic><topic>Research and Analysis Methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>RNA Stability</topic><topic>RNA, Messenger - chemistry</topic><topic>RNA, Protozoan - chemistry</topic><topic>Secondary structure</topic><topic>Sequence Deletion</topic><topic>Short Interspersed Nucleotide Elements</topic><topic>Site-directed mutagenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azizi, Hiva</creatorcontrib><creatorcontrib>Romão, Tatiany P</creatorcontrib><creatorcontrib>Santos Charret, Karen</creatorcontrib><creatorcontrib>Padmanabhan, Prasad K</creatorcontrib><creatorcontrib>de Melo Neto, Osvaldo P</creatorcontrib><creatorcontrib>Müller-McNicoll, Michaela</creatorcontrib><creatorcontrib>Papadopoulou, Barbara</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azizi, Hiva</au><au>Romão, Tatiany P</au><au>Santos Charret, Karen</au><au>Padmanabhan, Prasad K</au><au>de Melo Neto, Osvaldo P</au><au>Müller-McNicoll, Michaela</au><au>Papadopoulou, Barbara</au><au>Mata, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNA secondary structure and nucleotide composition of the conserved hallmark sequence of Leishmania SIDER2 retroposons are essential for endonucleolytic cleavage and mRNA degradation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-07-13</date><risdate>2017</risdate><volume>12</volume><issue>7</issue><spage>e0180678</spage><pages>e0180678-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We have reported previously that Short Interspersed Degenerate Retroposons of the SIDER2 subfamily, largely located within 3'UTRs of Leishmania transcripts, promote rapid turnover of mRNAs through endonucleolytic cleavage within the highly conserved second tandem 79-nt hallmark sequence (79-nt SII). Here, we used site-directed mutagenesis and in silico RNA structural studies to delineate the cis-acting requirements within 79-nt SII for cleavage and mRNA degradation. The putative cleavage site(s) and other nucleotides predicted to alter the RNA secondary structure of 79-nt SII were either deleted or mutated and their effect on mRNA turnover was monitored using a gene reporter system. We found that short deletions of 8-nt spanning the two predicted cleavage sites block degradation of SIDER2-containing transcripts, leading to mRNA accumulation. Furthermore, single or double substitutions of the dinucleotides targeted for cleavage as well as mutations altering the predicted RNA secondary structure encompassing both cleavage sites also prevent mRNA degradation, confirming that these dinucleotides are the bona fide cleavage sites. In line with these results, we show that stage-regulated SIDER2 inactivation correlates with the absence of endonucleolytic cleavage. Overall, these data demonstrate that both cleavage sites within the conserved 79-nt SII as well as RNA folding in this region are essential for SIDER2-mediated mRNA decay, and further support that SIDER2-harboring transcripts are targeted for degradation by endonucleolytic cleavage.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28704426</pmid><doi>10.1371/journal.pone.0180678</doi><tpages>e0180678</tpages><orcidid>https://orcid.org/0000-0002-6697-9739</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-07, Vol.12 (7), p.e0180678
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1919495110
source Electronic Journals Library; MEDLINE; PubMed Central(OpenAccess); Full-Text Journals in Chemistry (Open access); DOAJ Directory of Open Access Journals; PLoS (Open access)
subjects Base Sequence
Biology and life sciences
Cleavage
Computer Simulation
Conserved Sequence
Deactivation
Decay
Degradation
Deoxyribonucleic acid
DNA
Folding
Gene expression
Genetic aspects
Genomes
Genomics
Hepatitis
Hepatitis delta virus
Immunology
Inactivation
Infectious diseases
Leishmania
Leishmania - genetics
Messenger RNA
Models, Molecular
mRNA turnover
Mutagenesis, Site-Directed
Mutation
Nucleic Acid Conformation
Nucleotide sequence
Nucleotides
Parasitic diseases
Plasmids
Protein structure
Research and Analysis Methods
Ribonucleic acid
RNA
RNA polymerase
RNA Stability
RNA, Messenger - chemistry
RNA, Protozoan - chemistry
Secondary structure
Sequence Deletion
Short Interspersed Nucleotide Elements
Site-directed mutagenesis
title RNA secondary structure and nucleotide composition of the conserved hallmark sequence of Leishmania SIDER2 retroposons are essential for endonucleolytic cleavage and mRNA degradation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNA%20secondary%20structure%20and%20nucleotide%20composition%20of%20the%20conserved%20hallmark%20sequence%20of%20Leishmania%20SIDER2%20retroposons%20are%20essential%20for%20endonucleolytic%20cleavage%20and%20mRNA%20degradation&rft.jtitle=PloS%20one&rft.au=Azizi,%20Hiva&rft.date=2017-07-13&rft.volume=12&rft.issue=7&rft.spage=e0180678&rft.pages=e0180678-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0180678&rft_dat=%3Cgale_plos_%3EA498443073%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919495110&rft_id=info:pmid/28704426&rft_galeid=A498443073&rft_doaj_id=oai_doaj_org_article_92144055325c405e8346b7c456940097&rfr_iscdi=true