Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents

Neuronal membrane potential resonance (MPR) is associated with subthreshold and network oscillations. A number of voltage-gated ionic currents can contribute to the generation or amplification of MPR, but how the interaction of these currents with linear currents contributes to MPR is not well under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2017-06, Vol.13 (6), p.e1005565-e1005565
Hauptverfasser: Fox, David M, Tseng, Hua-An, Smolinski, Tomasz G, Rotstein, Horacio G, Nadim, Farzan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1005565
container_issue 6
container_start_page e1005565
container_title PLoS computational biology
container_volume 13
creator Fox, David M
Tseng, Hua-An
Smolinski, Tomasz G
Rotstein, Horacio G
Nadim, Farzan
description Neuronal membrane potential resonance (MPR) is associated with subthreshold and network oscillations. A number of voltage-gated ionic currents can contribute to the generation or amplification of MPR, but how the interaction of these currents with linear currents contributes to MPR is not well understood. We explored this in the pacemaker PD neurons of the crab pyloric network. The PD neuron MPR is sensitive to blockers of H- (IH) and calcium-currents (ICa). We used the impedance profile of the biological PD neuron, measured in voltage clamp, to constrain parameter values of a conductance-based model using a genetic algorithm and obtained many optimal parameter combinations. Unlike most cases of MPR, in these optimal models, the values of resonant- (fres) and phasonant- (fϕ = 0) frequencies were almost identical. Taking advantage of this fact, we linked the peak phase of ionic currents to their amplitude, in order to provide a mechanistic explanation the dependence of MPR on the ICa gating variable time constants. Additionally, we found that distinct pairwise correlations between ICa parameters contributed to the maintenance of fres and resonance power (QZ). Measurements of the PD neuron MPR at more hyperpolarized voltages resulted in a reduction of fres but no change in QZ. Constraining the optimal models using these data unmasked a positive correlation between the maximal conductances of IH and ICa. Thus, although IH is not necessary for MPR in this neuron type, it contributes indirectly by constraining the parameters of ICa.
doi_str_mv 10.1371/journal.pcbi.1005565
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1919490247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A497485251</galeid><doaj_id>oai_doaj_org_article_c22c2207459f472d9b7023897b364a7e</doaj_id><sourcerecordid>A497485251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-fb512e41ea3933b51953d35251ed31a93660b487dbdff3927a89fa6806d1947b3</originalsourceid><addsrcrecordid>eNqVkktv1DAUhSMEoqXwDxBEYgOLGez4FW-QqoqWkQpIPNaW49zMeJTYU9vh8e9xmEzVQd2gRIof3zk39-gWxXOMlpgI_Hbrx-B0v9yZxi4xQoxx9qA4xYyRhSCsfnhnfVI8iXGLUF5K_rg4qWpWV0Sy02L7EcxGOxuHWPquXIODoJP1btoNMDRBOyh3PoFLVvdlgOiddgZK60pdOhhDZn_atCmHsU9218OBSWW2saY0YwhZHZ8WjzrdR3g2f8-K75fvv118WFx_vlpdnF8vDOc4LbqG4QooBk0kIXkjGWkJqxiGlmAtCeeoobVom7briKyErmWneY14iyUVDTkrXu59d72Pao4pKizztUQVFZlY7YnW663aBTvo8Ft5bdXfAx_WSodkTQ_KVFV-kaBMdlRUrWwEqkgtcx1OtYDs9W6uNjYDtCZ3GnR_ZHp84-xGrf0PxajgBNFs8Ho2CP5mhJjUYKOBvs_B-3H6b8Qpr6mQGX31D3p_dzO11rkB6zqf65rJVJ1TKWg9ZZmp5T1UfloYrPEOOpvPjwRvjgSZSfArrfUYo1p9_fIf7Kdjlu5ZE3yMAbrb7DBS06QfmlTTpKt50rPsxd3cb0WH0SZ_AJlW-XM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919490247</pqid></control><display><type>article</type><title>Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Fox, David M ; Tseng, Hua-An ; Smolinski, Tomasz G ; Rotstein, Horacio G ; Nadim, Farzan</creator><contributor>Vervaeke, Koen</contributor><creatorcontrib>Fox, David M ; Tseng, Hua-An ; Smolinski, Tomasz G ; Rotstein, Horacio G ; Nadim, Farzan ; Vervaeke, Koen</creatorcontrib><description>Neuronal membrane potential resonance (MPR) is associated with subthreshold and network oscillations. A number of voltage-gated ionic currents can contribute to the generation or amplification of MPR, but how the interaction of these currents with linear currents contributes to MPR is not well understood. We explored this in the pacemaker PD neurons of the crab pyloric network. The PD neuron MPR is sensitive to blockers of H- (IH) and calcium-currents (ICa). We used the impedance profile of the biological PD neuron, measured in voltage clamp, to constrain parameter values of a conductance-based model using a genetic algorithm and obtained many optimal parameter combinations. Unlike most cases of MPR, in these optimal models, the values of resonant- (fres) and phasonant- (fϕ = 0) frequencies were almost identical. Taking advantage of this fact, we linked the peak phase of ionic currents to their amplitude, in order to provide a mechanistic explanation the dependence of MPR on the ICa gating variable time constants. Additionally, we found that distinct pairwise correlations between ICa parameters contributed to the maintenance of fres and resonance power (QZ). Measurements of the PD neuron MPR at more hyperpolarized voltages resulted in a reduction of fres but no change in QZ. Constraining the optimal models using these data unmasked a positive correlation between the maximal conductances of IH and ICa. Thus, although IH is not necessary for MPR in this neuron type, it contributes indirectly by constraining the parameters of ICa.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1005565</identifier><identifier>PMID: 28582395</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology and Life Sciences ; Brachyura - cytology ; Calcium ; Calcium currents ; Computational Biology ; Computer and Information Sciences ; Conductance ; Constants ; Constraining ; Crabs ; Crustaceans ; Dopamine ; Electric potential ; Electrophysiology ; Gating ; Gene expression ; Genetic algorithms ; Impedance ; Ion Transport ; Mathematical models ; Medicine and Health Sciences ; Membrane potential ; Membrane Potentials - physiology ; Models, Neurological ; Movement disorders ; Neural circuitry ; Neurodegenerative diseases ; Neurons ; Neurons - physiology ; Observations ; Parkinson's disease ; Patch-Clamp Techniques ; Physical Sciences ; Physiological aspects ; Resistance ; Resonance ; Resonance (Physics) ; Voltage</subject><ispartof>PLoS computational biology, 2017-06, Vol.13 (6), p.e1005565-e1005565</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Fox DM, Tseng H-a, Smolinski TG, Rotstein HG, Nadim F (2017) Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents. PLoS Comput Biol 13(6): e1005565. https://doi.org/10.1371/journal.pcbi.1005565</rights><rights>2017 Fox et al 2017 Fox et al</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Fox DM, Tseng H-a, Smolinski TG, Rotstein HG, Nadim F (2017) Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents. PLoS Comput Biol 13(6): e1005565. https://doi.org/10.1371/journal.pcbi.1005565</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-fb512e41ea3933b51953d35251ed31a93660b487dbdff3927a89fa6806d1947b3</citedby><cites>FETCH-LOGICAL-c661t-fb512e41ea3933b51953d35251ed31a93660b487dbdff3927a89fa6806d1947b3</cites><orcidid>0000-0002-5340-2084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476304/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476304/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28582395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Vervaeke, Koen</contributor><creatorcontrib>Fox, David M</creatorcontrib><creatorcontrib>Tseng, Hua-An</creatorcontrib><creatorcontrib>Smolinski, Tomasz G</creatorcontrib><creatorcontrib>Rotstein, Horacio G</creatorcontrib><creatorcontrib>Nadim, Farzan</creatorcontrib><title>Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Neuronal membrane potential resonance (MPR) is associated with subthreshold and network oscillations. A number of voltage-gated ionic currents can contribute to the generation or amplification of MPR, but how the interaction of these currents with linear currents contributes to MPR is not well understood. We explored this in the pacemaker PD neurons of the crab pyloric network. The PD neuron MPR is sensitive to blockers of H- (IH) and calcium-currents (ICa). We used the impedance profile of the biological PD neuron, measured in voltage clamp, to constrain parameter values of a conductance-based model using a genetic algorithm and obtained many optimal parameter combinations. Unlike most cases of MPR, in these optimal models, the values of resonant- (fres) and phasonant- (fϕ = 0) frequencies were almost identical. Taking advantage of this fact, we linked the peak phase of ionic currents to their amplitude, in order to provide a mechanistic explanation the dependence of MPR on the ICa gating variable time constants. Additionally, we found that distinct pairwise correlations between ICa parameters contributed to the maintenance of fres and resonance power (QZ). Measurements of the PD neuron MPR at more hyperpolarized voltages resulted in a reduction of fres but no change in QZ. Constraining the optimal models using these data unmasked a positive correlation between the maximal conductances of IH and ICa. Thus, although IH is not necessary for MPR in this neuron type, it contributes indirectly by constraining the parameters of ICa.</description><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Brachyura - cytology</subject><subject>Calcium</subject><subject>Calcium currents</subject><subject>Computational Biology</subject><subject>Computer and Information Sciences</subject><subject>Conductance</subject><subject>Constants</subject><subject>Constraining</subject><subject>Crabs</subject><subject>Crustaceans</subject><subject>Dopamine</subject><subject>Electric potential</subject><subject>Electrophysiology</subject><subject>Gating</subject><subject>Gene expression</subject><subject>Genetic algorithms</subject><subject>Impedance</subject><subject>Ion Transport</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Membrane potential</subject><subject>Membrane Potentials - physiology</subject><subject>Models, Neurological</subject><subject>Movement disorders</subject><subject>Neural circuitry</subject><subject>Neurodegenerative diseases</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Observations</subject><subject>Parkinson's disease</subject><subject>Patch-Clamp Techniques</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Resistance</subject><subject>Resonance</subject><subject>Resonance (Physics)</subject><subject>Voltage</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAUhSMEoqXwDxBEYgOLGez4FW-QqoqWkQpIPNaW49zMeJTYU9vh8e9xmEzVQd2gRIof3zk39-gWxXOMlpgI_Hbrx-B0v9yZxi4xQoxx9qA4xYyRhSCsfnhnfVI8iXGLUF5K_rg4qWpWV0Sy02L7EcxGOxuHWPquXIODoJP1btoNMDRBOyh3PoFLVvdlgOiddgZK60pdOhhDZn_atCmHsU9218OBSWW2saY0YwhZHZ8WjzrdR3g2f8-K75fvv118WFx_vlpdnF8vDOc4LbqG4QooBk0kIXkjGWkJqxiGlmAtCeeoobVom7briKyErmWneY14iyUVDTkrXu59d72Pao4pKizztUQVFZlY7YnW663aBTvo8Ft5bdXfAx_WSodkTQ_KVFV-kaBMdlRUrWwEqkgtcx1OtYDs9W6uNjYDtCZ3GnR_ZHp84-xGrf0PxajgBNFs8Ho2CP5mhJjUYKOBvs_B-3H6b8Qpr6mQGX31D3p_dzO11rkB6zqf65rJVJ1TKWg9ZZmp5T1UfloYrPEOOpvPjwRvjgSZSfArrfUYo1p9_fIf7Kdjlu5ZE3yMAbrb7DBS06QfmlTTpKt50rPsxd3cb0WH0SZ_AJlW-XM</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Fox, David M</creator><creator>Tseng, Hua-An</creator><creator>Smolinski, Tomasz G</creator><creator>Rotstein, Horacio G</creator><creator>Nadim, Farzan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5340-2084</orcidid></search><sort><creationdate>20170601</creationdate><title>Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents</title><author>Fox, David M ; Tseng, Hua-An ; Smolinski, Tomasz G ; Rotstein, Horacio G ; Nadim, Farzan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-fb512e41ea3933b51953d35251ed31a93660b487dbdff3927a89fa6806d1947b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Brachyura - cytology</topic><topic>Calcium</topic><topic>Calcium currents</topic><topic>Computational Biology</topic><topic>Computer and Information Sciences</topic><topic>Conductance</topic><topic>Constants</topic><topic>Constraining</topic><topic>Crabs</topic><topic>Crustaceans</topic><topic>Dopamine</topic><topic>Electric potential</topic><topic>Electrophysiology</topic><topic>Gating</topic><topic>Gene expression</topic><topic>Genetic algorithms</topic><topic>Impedance</topic><topic>Ion Transport</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Membrane potential</topic><topic>Membrane Potentials - physiology</topic><topic>Models, Neurological</topic><topic>Movement disorders</topic><topic>Neural circuitry</topic><topic>Neurodegenerative diseases</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Observations</topic><topic>Parkinson's disease</topic><topic>Patch-Clamp Techniques</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Resistance</topic><topic>Resonance</topic><topic>Resonance (Physics)</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fox, David M</creatorcontrib><creatorcontrib>Tseng, Hua-An</creatorcontrib><creatorcontrib>Smolinski, Tomasz G</creatorcontrib><creatorcontrib>Rotstein, Horacio G</creatorcontrib><creatorcontrib>Nadim, Farzan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fox, David M</au><au>Tseng, Hua-An</au><au>Smolinski, Tomasz G</au><au>Rotstein, Horacio G</au><au>Nadim, Farzan</au><au>Vervaeke, Koen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>13</volume><issue>6</issue><spage>e1005565</spage><epage>e1005565</epage><pages>e1005565-e1005565</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Neuronal membrane potential resonance (MPR) is associated with subthreshold and network oscillations. A number of voltage-gated ionic currents can contribute to the generation or amplification of MPR, but how the interaction of these currents with linear currents contributes to MPR is not well understood. We explored this in the pacemaker PD neurons of the crab pyloric network. The PD neuron MPR is sensitive to blockers of H- (IH) and calcium-currents (ICa). We used the impedance profile of the biological PD neuron, measured in voltage clamp, to constrain parameter values of a conductance-based model using a genetic algorithm and obtained many optimal parameter combinations. Unlike most cases of MPR, in these optimal models, the values of resonant- (fres) and phasonant- (fϕ = 0) frequencies were almost identical. Taking advantage of this fact, we linked the peak phase of ionic currents to their amplitude, in order to provide a mechanistic explanation the dependence of MPR on the ICa gating variable time constants. Additionally, we found that distinct pairwise correlations between ICa parameters contributed to the maintenance of fres and resonance power (QZ). Measurements of the PD neuron MPR at more hyperpolarized voltages resulted in a reduction of fres but no change in QZ. Constraining the optimal models using these data unmasked a positive correlation between the maximal conductances of IH and ICa. Thus, although IH is not necessary for MPR in this neuron type, it contributes indirectly by constraining the parameters of ICa.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28582395</pmid><doi>10.1371/journal.pcbi.1005565</doi><orcidid>https://orcid.org/0000-0002-5340-2084</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2017-06, Vol.13 (6), p.e1005565-e1005565
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1919490247
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Biology and Life Sciences
Brachyura - cytology
Calcium
Calcium currents
Computational Biology
Computer and Information Sciences
Conductance
Constants
Constraining
Crabs
Crustaceans
Dopamine
Electric potential
Electrophysiology
Gating
Gene expression
Genetic algorithms
Impedance
Ion Transport
Mathematical models
Medicine and Health Sciences
Membrane potential
Membrane Potentials - physiology
Models, Neurological
Movement disorders
Neural circuitry
Neurodegenerative diseases
Neurons
Neurons - physiology
Observations
Parkinson's disease
Patch-Clamp Techniques
Physical Sciences
Physiological aspects
Resistance
Resonance
Resonance (Physics)
Voltage
title Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A43%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20generation%20of%20membrane%20potential%20resonance%20in%20a%20neuron%20with%20multiple%20resonant%20ionic%20currents&rft.jtitle=PLoS%20computational%20biology&rft.au=Fox,%20David%20M&rft.date=2017-06-01&rft.volume=13&rft.issue=6&rft.spage=e1005565&rft.epage=e1005565&rft.pages=e1005565-e1005565&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1005565&rft_dat=%3Cgale_plos_%3EA497485251%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919490247&rft_id=info:pmid/28582395&rft_galeid=A497485251&rft_doaj_id=oai_doaj_org_article_c22c2207459f472d9b7023897b364a7e&rfr_iscdi=true