Evaluating the effect of mutations and ligand binding on transthyretin homotetramer dynamics
Native transthyretin (TTR) homotetramer dissociation is the first step of the fibrils formation process in amyloid disease. A large number of specific point mutations that destabilize TTR quaternary structure have shown pro-amyloidogenic effects. Besides, several compounds have been proposed as drug...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-07, Vol.12 (7), p.e0181019-e0181019 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0181019 |
---|---|
container_issue | 7 |
container_start_page | e0181019 |
container_title | PloS one |
container_volume | 12 |
creator | Saldaño, Tadeo E Zanotti, Giuseppe Parisi, Gustavo Fernandez-Alberti, Sebastian |
description | Native transthyretin (TTR) homotetramer dissociation is the first step of the fibrils formation process in amyloid disease. A large number of specific point mutations that destabilize TTR quaternary structure have shown pro-amyloidogenic effects. Besides, several compounds have been proposed as drugs in the therapy of TTR amyloidosis due to their TTR tetramer binding affinities, and therefore, contribution to its integrity. In the present paper we have explored key positions sustaining TTR tetramer dynamical stability. We have identified positions whose mutations alter the most the TTR tetramer equilibrium dynamics based on normal mode analysis and their response to local perturbations. We have found that these positions are mostly localized at β-strands E and F and EF-loop. The monomer-monomer interface is pointed out as one of the most vulnerable regions to mutations that lead to significant changes in the TTR-tetramer equilibrium dynamics and, therefore, induces TTR amyloidosis. Besides, we have found that mutations on residues localized at the dimer-dimer interface and/or at the T4 hormone binding site destabilize the tetramer more than the average. Finally, we were able to compare several compounds according to their effect on vibrations associated to the ligand binding. Our ligand comparison is discussed and analyzed in terms of parameters and measurements associated to TTR-ligand binding affinities and the stabilization of its native state. |
doi_str_mv | 10.1371/journal.pone.0181019 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1919489718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498443205</galeid><doaj_id>oai_doaj_org_article_d2f3519581ec4c3e85272999f0addc31</doaj_id><sourcerecordid>A498443205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-ce3e37dbb025eb5ebc96732291617d1b81c378951e26e2d831b8df0187ae321e3</originalsourceid><addsrcrecordid>eNqNk1trFDEUxwdRbF39BqIDgujDrrnMJXkRSqm6UCh4exJCJjlzKZlknWSK--3NdKdlR_ogGUg4-Z1_5tyS5CVGG0xL_OHajYOVZrNzFjYIM4wwf5ScYk7JuiCIPj46nyTPvL9GKKesKJ4mJ4SVKMs4PU1-XdxIM8rQ2SYNLaRQ16BC6uq0H0M0O-tTaXVqumbaqs7qCXU2DYO0PrT7AaJz2rreBYi2HoZU763sO-WfJ09qaTy8mPdV8uPTxffzL-vLq8_b87PLtSpzFtYKKNBSVxUiOVTxU7woKSEcF7jUuGJY0ZLxHAMpgGhGo0nXMeRSAiUY6Cp5fdDdGefFnBgvMMc8Y7zELBLbA6GdvBa7oevlsBdOduLW4IZGyCF0yoDQpKY55jnDoDJFgeWkJJzzGkmtFcVR6-P82lj1oBXYGLZZiC5vbNeKxt2IPEeccBIF3s0Cg_s9gg-i77wCY6QFN07_TUqKCKMoom_-QR-ObqYaGQPobO3iu2oSFWcZZ1lGSSz9Ktk8QMWlIRYrdlHdRfvC4f3CITIB_oRGjt6L7bev_89e_Vyyb4_YFqQJrXdmvO22JZgdQDU47weo75OMkZiG4C4bYhoCMQ9BdHt1XKB7p7uup38B98QCCA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919489718</pqid></control><display><type>article</type><title>Evaluating the effect of mutations and ligand binding on transthyretin homotetramer dynamics</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>PMC (PubMed Central)</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Saldaño, Tadeo E ; Zanotti, Giuseppe ; Parisi, Gustavo ; Fernandez-Alberti, Sebastian</creator><contributor>Soares, Claudio M</contributor><creatorcontrib>Saldaño, Tadeo E ; Zanotti, Giuseppe ; Parisi, Gustavo ; Fernandez-Alberti, Sebastian ; Soares, Claudio M</creatorcontrib><description>Native transthyretin (TTR) homotetramer dissociation is the first step of the fibrils formation process in amyloid disease. A large number of specific point mutations that destabilize TTR quaternary structure have shown pro-amyloidogenic effects. Besides, several compounds have been proposed as drugs in the therapy of TTR amyloidosis due to their TTR tetramer binding affinities, and therefore, contribution to its integrity. In the present paper we have explored key positions sustaining TTR tetramer dynamical stability. We have identified positions whose mutations alter the most the TTR tetramer equilibrium dynamics based on normal mode analysis and their response to local perturbations. We have found that these positions are mostly localized at β-strands E and F and EF-loop. The monomer-monomer interface is pointed out as one of the most vulnerable regions to mutations that lead to significant changes in the TTR-tetramer equilibrium dynamics and, therefore, induces TTR amyloidosis. Besides, we have found that mutations on residues localized at the dimer-dimer interface and/or at the T4 hormone binding site destabilize the tetramer more than the average. Finally, we were able to compare several compounds according to their effect on vibrations associated to the ligand binding. Our ligand comparison is discussed and analyzed in terms of parameters and measurements associated to TTR-ligand binding affinities and the stabilization of its native state.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0181019</identifier><identifier>PMID: 28704493</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Amyloid ; Amyloidogenesis ; Amyloidosis ; Binding Sites ; Biology and Life Sciences ; Cardiomyopathy ; Dissociation ; Drugs ; Dynamic stability ; Equilibrium ; Fibrillogenesis ; Humans ; Ligand binding (Biochemistry) ; Ligands ; Medicine and Health Sciences ; Models, Molecular ; Mutation ; Physical Sciences ; Prealbumin - chemistry ; Prealbumin - genetics ; Prealbumin - metabolism ; Protein Binding ; Protein Stability ; Protein structure ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Proteins ; Quaternary ; Quaternary structure ; Research and Analysis Methods ; Strands ; Thyroid gland ; Transport proteins ; Transthyretin ; Vibrations</subject><ispartof>PloS one, 2017-07, Vol.12 (7), p.e0181019-e0181019</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Saldaño et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Saldaño et al 2017 Saldaño et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-ce3e37dbb025eb5ebc96732291617d1b81c378951e26e2d831b8df0187ae321e3</citedby><cites>FETCH-LOGICAL-c758t-ce3e37dbb025eb5ebc96732291617d1b81c378951e26e2d831b8df0187ae321e3</cites><orcidid>0000-0002-0916-5069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5509292/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5509292/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28704493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Soares, Claudio M</contributor><creatorcontrib>Saldaño, Tadeo E</creatorcontrib><creatorcontrib>Zanotti, Giuseppe</creatorcontrib><creatorcontrib>Parisi, Gustavo</creatorcontrib><creatorcontrib>Fernandez-Alberti, Sebastian</creatorcontrib><title>Evaluating the effect of mutations and ligand binding on transthyretin homotetramer dynamics</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Native transthyretin (TTR) homotetramer dissociation is the first step of the fibrils formation process in amyloid disease. A large number of specific point mutations that destabilize TTR quaternary structure have shown pro-amyloidogenic effects. Besides, several compounds have been proposed as drugs in the therapy of TTR amyloidosis due to their TTR tetramer binding affinities, and therefore, contribution to its integrity. In the present paper we have explored key positions sustaining TTR tetramer dynamical stability. We have identified positions whose mutations alter the most the TTR tetramer equilibrium dynamics based on normal mode analysis and their response to local perturbations. We have found that these positions are mostly localized at β-strands E and F and EF-loop. The monomer-monomer interface is pointed out as one of the most vulnerable regions to mutations that lead to significant changes in the TTR-tetramer equilibrium dynamics and, therefore, induces TTR amyloidosis. Besides, we have found that mutations on residues localized at the dimer-dimer interface and/or at the T4 hormone binding site destabilize the tetramer more than the average. Finally, we were able to compare several compounds according to their effect on vibrations associated to the ligand binding. Our ligand comparison is discussed and analyzed in terms of parameters and measurements associated to TTR-ligand binding affinities and the stabilization of its native state.</description><subject>Algorithms</subject><subject>Amyloid</subject><subject>Amyloidogenesis</subject><subject>Amyloidosis</subject><subject>Binding Sites</subject><subject>Biology and Life Sciences</subject><subject>Cardiomyopathy</subject><subject>Dissociation</subject><subject>Drugs</subject><subject>Dynamic stability</subject><subject>Equilibrium</subject><subject>Fibrillogenesis</subject><subject>Humans</subject><subject>Ligand binding (Biochemistry)</subject><subject>Ligands</subject><subject>Medicine and Health Sciences</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Physical Sciences</subject><subject>Prealbumin - chemistry</subject><subject>Prealbumin - genetics</subject><subject>Prealbumin - metabolism</subject><subject>Protein Binding</subject><subject>Protein Stability</subject><subject>Protein structure</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Quaternary</subject><subject>Quaternary structure</subject><subject>Research and Analysis Methods</subject><subject>Strands</subject><subject>Thyroid gland</subject><subject>Transport proteins</subject><subject>Transthyretin</subject><subject>Vibrations</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1trFDEUxwdRbF39BqIDgujDrrnMJXkRSqm6UCh4exJCJjlzKZlknWSK--3NdKdlR_ogGUg4-Z1_5tyS5CVGG0xL_OHajYOVZrNzFjYIM4wwf5ScYk7JuiCIPj46nyTPvL9GKKesKJ4mJ4SVKMs4PU1-XdxIM8rQ2SYNLaRQ16BC6uq0H0M0O-tTaXVqumbaqs7qCXU2DYO0PrT7AaJz2rreBYi2HoZU763sO-WfJ09qaTy8mPdV8uPTxffzL-vLq8_b87PLtSpzFtYKKNBSVxUiOVTxU7woKSEcF7jUuGJY0ZLxHAMpgGhGo0nXMeRSAiUY6Cp5fdDdGefFnBgvMMc8Y7zELBLbA6GdvBa7oevlsBdOduLW4IZGyCF0yoDQpKY55jnDoDJFgeWkJJzzGkmtFcVR6-P82lj1oBXYGLZZiC5vbNeKxt2IPEeccBIF3s0Cg_s9gg-i77wCY6QFN07_TUqKCKMoom_-QR-ObqYaGQPobO3iu2oSFWcZZ1lGSSz9Ktk8QMWlIRYrdlHdRfvC4f3CITIB_oRGjt6L7bev_89e_Vyyb4_YFqQJrXdmvO22JZgdQDU47weo75OMkZiG4C4bYhoCMQ9BdHt1XKB7p7uup38B98QCCA</recordid><startdate>20170713</startdate><enddate>20170713</enddate><creator>Saldaño, Tadeo E</creator><creator>Zanotti, Giuseppe</creator><creator>Parisi, Gustavo</creator><creator>Fernandez-Alberti, Sebastian</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0916-5069</orcidid></search><sort><creationdate>20170713</creationdate><title>Evaluating the effect of mutations and ligand binding on transthyretin homotetramer dynamics</title><author>Saldaño, Tadeo E ; Zanotti, Giuseppe ; Parisi, Gustavo ; Fernandez-Alberti, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-ce3e37dbb025eb5ebc96732291617d1b81c378951e26e2d831b8df0187ae321e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Amyloid</topic><topic>Amyloidogenesis</topic><topic>Amyloidosis</topic><topic>Binding Sites</topic><topic>Biology and Life Sciences</topic><topic>Cardiomyopathy</topic><topic>Dissociation</topic><topic>Drugs</topic><topic>Dynamic stability</topic><topic>Equilibrium</topic><topic>Fibrillogenesis</topic><topic>Humans</topic><topic>Ligand binding (Biochemistry)</topic><topic>Ligands</topic><topic>Medicine and Health Sciences</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Physical Sciences</topic><topic>Prealbumin - chemistry</topic><topic>Prealbumin - genetics</topic><topic>Prealbumin - metabolism</topic><topic>Protein Binding</topic><topic>Protein Stability</topic><topic>Protein structure</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Quaternary</topic><topic>Quaternary structure</topic><topic>Research and Analysis Methods</topic><topic>Strands</topic><topic>Thyroid gland</topic><topic>Transport proteins</topic><topic>Transthyretin</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saldaño, Tadeo E</creatorcontrib><creatorcontrib>Zanotti, Giuseppe</creatorcontrib><creatorcontrib>Parisi, Gustavo</creatorcontrib><creatorcontrib>Fernandez-Alberti, Sebastian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saldaño, Tadeo E</au><au>Zanotti, Giuseppe</au><au>Parisi, Gustavo</au><au>Fernandez-Alberti, Sebastian</au><au>Soares, Claudio M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the effect of mutations and ligand binding on transthyretin homotetramer dynamics</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-07-13</date><risdate>2017</risdate><volume>12</volume><issue>7</issue><spage>e0181019</spage><epage>e0181019</epage><pages>e0181019-e0181019</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Native transthyretin (TTR) homotetramer dissociation is the first step of the fibrils formation process in amyloid disease. A large number of specific point mutations that destabilize TTR quaternary structure have shown pro-amyloidogenic effects. Besides, several compounds have been proposed as drugs in the therapy of TTR amyloidosis due to their TTR tetramer binding affinities, and therefore, contribution to its integrity. In the present paper we have explored key positions sustaining TTR tetramer dynamical stability. We have identified positions whose mutations alter the most the TTR tetramer equilibrium dynamics based on normal mode analysis and their response to local perturbations. We have found that these positions are mostly localized at β-strands E and F and EF-loop. The monomer-monomer interface is pointed out as one of the most vulnerable regions to mutations that lead to significant changes in the TTR-tetramer equilibrium dynamics and, therefore, induces TTR amyloidosis. Besides, we have found that mutations on residues localized at the dimer-dimer interface and/or at the T4 hormone binding site destabilize the tetramer more than the average. Finally, we were able to compare several compounds according to their effect on vibrations associated to the ligand binding. Our ligand comparison is discussed and analyzed in terms of parameters and measurements associated to TTR-ligand binding affinities and the stabilization of its native state.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28704493</pmid><doi>10.1371/journal.pone.0181019</doi><tpages>e0181019</tpages><orcidid>https://orcid.org/0000-0002-0916-5069</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-07, Vol.12 (7), p.e0181019-e0181019 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1919489718 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; PMC (PubMed Central); DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Algorithms Amyloid Amyloidogenesis Amyloidosis Binding Sites Biology and Life Sciences Cardiomyopathy Dissociation Drugs Dynamic stability Equilibrium Fibrillogenesis Humans Ligand binding (Biochemistry) Ligands Medicine and Health Sciences Models, Molecular Mutation Physical Sciences Prealbumin - chemistry Prealbumin - genetics Prealbumin - metabolism Protein Binding Protein Stability Protein structure Protein Structure, Quaternary Protein Structure, Secondary Proteins Quaternary Quaternary structure Research and Analysis Methods Strands Thyroid gland Transport proteins Transthyretin Vibrations |
title | Evaluating the effect of mutations and ligand binding on transthyretin homotetramer dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20effect%20of%20mutations%20and%20ligand%20binding%20on%20transthyretin%20homotetramer%20dynamics&rft.jtitle=PloS%20one&rft.au=Salda%C3%B1o,%20Tadeo%20E&rft.date=2017-07-13&rft.volume=12&rft.issue=7&rft.spage=e0181019&rft.epage=e0181019&rft.pages=e0181019-e0181019&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0181019&rft_dat=%3Cgale_plos_%3EA498443205%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919489718&rft_id=info:pmid/28704493&rft_galeid=A498443205&rft_doaj_id=oai_doaj_org_article_d2f3519581ec4c3e85272999f0addc31&rfr_iscdi=true |