Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from edible plants

The recent Zika viral (ZIKV) epidemic has been associated with severe neurological pathologies such as neonatal microcephaly and Guillain-Barre syndrome but unfortunately no vaccine or medication is effectively available yet. Zika NS2B-NS3pro is essential for the proteolysis of the viral polyprotein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-07, Vol.12 (7), p.e0180632-e0180632
Hauptverfasser: Roy, Amrita, Lim, Liangzhong, Srivastava, Shagun, Lu, Yimei, Song, Jianxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0180632
container_issue 7
container_start_page e0180632
container_title PloS one
container_volume 12
creator Roy, Amrita
Lim, Liangzhong
Srivastava, Shagun
Lu, Yimei
Song, Jianxing
description The recent Zika viral (ZIKV) epidemic has been associated with severe neurological pathologies such as neonatal microcephaly and Guillain-Barre syndrome but unfortunately no vaccine or medication is effectively available yet. Zika NS2B-NS3pro is essential for the proteolysis of the viral polyprotein and thereby viral replication. Thus NS2B-NS3pro represents an attractive target for anti-Zika drug discovery/design. Here, we have characterized the solution conformations and catalytic parameters of both linked and unlinked Zika NS2B-NS3pro complexes and found that the unlinked complex manifested well-dispersed NMR spectra. Subsequently with selective isotope-labeling using NMR spectroscopy, we demonstrated that C-terminal residues (R73-K100) of NS2B is highly disordered without any stable tertiary and secondary structures in the Zika NS2B-NS3pro complex in the free state. Upon binding to the well-characterized serine protease inhibitor, bovine pancreatic trypsin inhibitor (BPTI), only the extreme C-terminal residues (L86-K100) remain disordered. Additionally, we have identified five flavonoids and one natural phenol rich in edible plants including fruits and vegetables, which inhibit Zika NS2B-NS3pro in a non-competitive mode, with Ki ranging from 770 nM for Myricetin to 34.02 μM for Apigenin. Molecular docking showed that they all bind to a pocket on the back of the active site and their structure-activity relationship was elucidated. Our study provides valuable insights into the solution conformation of Zika NS2B-NS3pro and further deciphers its susceptibility towards allosteric inhibition by natural products. As these natural product inhibitors fundamentally differ from the currently-known active site inhibitors in terms of both inhibitory mode and chemical scaffold, our finding might open a new avenue for development of better allosteric inhibitors to fight ZIKV infection.
doi_str_mv 10.1371/journal.pone.0180632
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1917693783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498146148</galeid><doaj_id>oai_doaj_org_article_ea079893862441c58cbb2608bffab97e</doaj_id><sourcerecordid>A498146148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-fedd104e3cc5db2dc5b43c1bef7156b050aa84c87d4cbd7d192dcb780fc8026d3</originalsourceid><addsrcrecordid>eNqNk8tu1DAUhiMEoqXwBggsISFYzOBLYjubSqXiMlLVSgywYGP5OuOSxIOdIPr2eGbSaoK6QFk4tr_z2_7POUXxHME5Igy9uw5D7GQz34TOziHikBL8oDhGNcEziiF5ePB_VDxJ6RrCinBKHxdHmDMIKa2OC7MMzdD70AEdOhdiK7eTBIIDP_xPCS6X-P3sckk2MQDZGeD7BHy39srvgtQN6GQ_RNmATJhB520XQwus8aqxYNPIrk9Pi0dONsk-G8eT4tvHD1_PP88urj4tzs8uZppVvJ85awyCpSVaV0ZhoytVEo2UdQxVVMEKSslLzZkptTLMoDozinHoNIeYGnJSvNzrbpqQxGhQEqhGjNaEcZKJxZ4wQV6LTfStjDciSC92CyGuhIy9140VVkJW8zo7hssS6YprpTCFXDknVc1s1jodTxtUa422XZ99mIhOdzq_FqvwW1QVJJjiLPBmFIjh12BTL1qftG2yZzYMu3tzXrKc7Iy--ge9_3UjtZL5AT7nM5-rt6LirKw5Kikqeabm91D5M7b1uQqs83l9EvB2EpCZ3v7pV3JISSyWX_6fvfo-ZV8fsGsrm36dxnJMU7DcgzqGlKJ1dyYjKLbNcOuG2DaDGJshh704TNBd0G31k7-SnQV2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917693783</pqid></control><display><type>article</type><title>Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from edible plants</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Roy, Amrita ; Lim, Liangzhong ; Srivastava, Shagun ; Lu, Yimei ; Song, Jianxing</creator><contributor>Permyakov, Eugene A.</contributor><creatorcontrib>Roy, Amrita ; Lim, Liangzhong ; Srivastava, Shagun ; Lu, Yimei ; Song, Jianxing ; Permyakov, Eugene A.</creatorcontrib><description>The recent Zika viral (ZIKV) epidemic has been associated with severe neurological pathologies such as neonatal microcephaly and Guillain-Barre syndrome but unfortunately no vaccine or medication is effectively available yet. Zika NS2B-NS3pro is essential for the proteolysis of the viral polyprotein and thereby viral replication. Thus NS2B-NS3pro represents an attractive target for anti-Zika drug discovery/design. Here, we have characterized the solution conformations and catalytic parameters of both linked and unlinked Zika NS2B-NS3pro complexes and found that the unlinked complex manifested well-dispersed NMR spectra. Subsequently with selective isotope-labeling using NMR spectroscopy, we demonstrated that C-terminal residues (R73-K100) of NS2B is highly disordered without any stable tertiary and secondary structures in the Zika NS2B-NS3pro complex in the free state. Upon binding to the well-characterized serine protease inhibitor, bovine pancreatic trypsin inhibitor (BPTI), only the extreme C-terminal residues (L86-K100) remain disordered. Additionally, we have identified five flavonoids and one natural phenol rich in edible plants including fruits and vegetables, which inhibit Zika NS2B-NS3pro in a non-competitive mode, with Ki ranging from 770 nM for Myricetin to 34.02 μM for Apigenin. Molecular docking showed that they all bind to a pocket on the back of the active site and their structure-activity relationship was elucidated. Our study provides valuable insights into the solution conformation of Zika NS2B-NS3pro and further deciphers its susceptibility towards allosteric inhibition by natural products. As these natural product inhibitors fundamentally differ from the currently-known active site inhibitors in terms of both inhibitory mode and chemical scaffold, our finding might open a new avenue for development of better allosteric inhibitors to fight ZIKV infection.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0180632</identifier><identifier>PMID: 28700665</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Allosteric properties ; Binding Sites ; Biocatalysis - drug effects ; Biological Products - chemistry ; Biological Products - pharmacology ; Biology and life sciences ; Biophysical Phenomena - drug effects ; Buffers ; Catalysis ; Cloning, Molecular ; Conformation ; Dengue fever ; Drug development ; Drug discovery ; Drugs ; E coli ; Encephalitis ; Enzymes ; Epidemics ; Flavonoids ; Fruits ; Genomes ; Guillain-Barre syndrome ; Hepatitis ; Hydrogen Bonding ; Immunoglobulins ; Infections ; Inhibitors ; Kinetics ; Magnetic resonance spectroscopy ; Marking ; Medicine and Health Sciences ; Microencephaly ; Models, Molecular ; Molecular docking ; Molecular structure ; Mutation ; Natural products ; Neonates ; NMR spectroscopy ; Pancreas ; Physical Sciences ; Physiological aspects ; Plants (botany) ; Plants, Edible - chemistry ; Product inhibition ; Protease ; Protein Conformation ; Proteinase ; Proteins ; Proteolysis ; Public health ; Replication ; Research and analysis methods ; Residues ; RNA Helicases - antagonists &amp; inhibitors ; RNA Helicases - chemistry ; RNA Helicases - isolation &amp; purification ; RNA Helicases - metabolism ; Science ; Serine ; Serine Endopeptidases - chemistry ; Serine Endopeptidases - isolation &amp; purification ; Serine Endopeptidases - metabolism ; Serine proteinase ; Solutions ; Spectroscopy ; Structure ; Studies ; Trypsin ; Trypsin inhibitors ; Vector-borne diseases ; Vegetables ; Viral Nonstructural Proteins - antagonists &amp; inhibitors ; Viral Nonstructural Proteins - chemistry ; Viral Nonstructural Proteins - isolation &amp; purification ; Viral Nonstructural Proteins - metabolism ; Zika virus ; Zika Virus - chemistry ; Zika Virus - drug effects</subject><ispartof>PloS one, 2017-07, Vol.12 (7), p.e0180632-e0180632</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Roy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Roy et al 2017 Roy et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-fedd104e3cc5db2dc5b43c1bef7156b050aa84c87d4cbd7d192dcb780fc8026d3</citedby><cites>FETCH-LOGICAL-c758t-fedd104e3cc5db2dc5b43c1bef7156b050aa84c87d4cbd7d192dcb780fc8026d3</cites><orcidid>0000-0003-0224-6322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5503262/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5503262/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2101,2927,23865,27923,27924,53790,53792,79471,79472</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28700665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Permyakov, Eugene A.</contributor><creatorcontrib>Roy, Amrita</creatorcontrib><creatorcontrib>Lim, Liangzhong</creatorcontrib><creatorcontrib>Srivastava, Shagun</creatorcontrib><creatorcontrib>Lu, Yimei</creatorcontrib><creatorcontrib>Song, Jianxing</creatorcontrib><title>Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from edible plants</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The recent Zika viral (ZIKV) epidemic has been associated with severe neurological pathologies such as neonatal microcephaly and Guillain-Barre syndrome but unfortunately no vaccine or medication is effectively available yet. Zika NS2B-NS3pro is essential for the proteolysis of the viral polyprotein and thereby viral replication. Thus NS2B-NS3pro represents an attractive target for anti-Zika drug discovery/design. Here, we have characterized the solution conformations and catalytic parameters of both linked and unlinked Zika NS2B-NS3pro complexes and found that the unlinked complex manifested well-dispersed NMR spectra. Subsequently with selective isotope-labeling using NMR spectroscopy, we demonstrated that C-terminal residues (R73-K100) of NS2B is highly disordered without any stable tertiary and secondary structures in the Zika NS2B-NS3pro complex in the free state. Upon binding to the well-characterized serine protease inhibitor, bovine pancreatic trypsin inhibitor (BPTI), only the extreme C-terminal residues (L86-K100) remain disordered. Additionally, we have identified five flavonoids and one natural phenol rich in edible plants including fruits and vegetables, which inhibit Zika NS2B-NS3pro in a non-competitive mode, with Ki ranging from 770 nM for Myricetin to 34.02 μM for Apigenin. Molecular docking showed that they all bind to a pocket on the back of the active site and their structure-activity relationship was elucidated. Our study provides valuable insights into the solution conformation of Zika NS2B-NS3pro and further deciphers its susceptibility towards allosteric inhibition by natural products. As these natural product inhibitors fundamentally differ from the currently-known active site inhibitors in terms of both inhibitory mode and chemical scaffold, our finding might open a new avenue for development of better allosteric inhibitors to fight ZIKV infection.</description><subject>Allosteric properties</subject><subject>Binding Sites</subject><subject>Biocatalysis - drug effects</subject><subject>Biological Products - chemistry</subject><subject>Biological Products - pharmacology</subject><subject>Biology and life sciences</subject><subject>Biophysical Phenomena - drug effects</subject><subject>Buffers</subject><subject>Catalysis</subject><subject>Cloning, Molecular</subject><subject>Conformation</subject><subject>Dengue fever</subject><subject>Drug development</subject><subject>Drug discovery</subject><subject>Drugs</subject><subject>E coli</subject><subject>Encephalitis</subject><subject>Enzymes</subject><subject>Epidemics</subject><subject>Flavonoids</subject><subject>Fruits</subject><subject>Genomes</subject><subject>Guillain-Barre syndrome</subject><subject>Hepatitis</subject><subject>Hydrogen Bonding</subject><subject>Immunoglobulins</subject><subject>Infections</subject><subject>Inhibitors</subject><subject>Kinetics</subject><subject>Magnetic resonance spectroscopy</subject><subject>Marking</subject><subject>Medicine and Health Sciences</subject><subject>Microencephaly</subject><subject>Models, Molecular</subject><subject>Molecular docking</subject><subject>Molecular structure</subject><subject>Mutation</subject><subject>Natural products</subject><subject>Neonates</subject><subject>NMR spectroscopy</subject><subject>Pancreas</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Plants (botany)</subject><subject>Plants, Edible - chemistry</subject><subject>Product inhibition</subject><subject>Protease</subject><subject>Protein Conformation</subject><subject>Proteinase</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Public health</subject><subject>Replication</subject><subject>Research and analysis methods</subject><subject>Residues</subject><subject>RNA Helicases - antagonists &amp; inhibitors</subject><subject>RNA Helicases - chemistry</subject><subject>RNA Helicases - isolation &amp; purification</subject><subject>RNA Helicases - metabolism</subject><subject>Science</subject><subject>Serine</subject><subject>Serine Endopeptidases - chemistry</subject><subject>Serine Endopeptidases - isolation &amp; purification</subject><subject>Serine Endopeptidases - metabolism</subject><subject>Serine proteinase</subject><subject>Solutions</subject><subject>Spectroscopy</subject><subject>Structure</subject><subject>Studies</subject><subject>Trypsin</subject><subject>Trypsin inhibitors</subject><subject>Vector-borne diseases</subject><subject>Vegetables</subject><subject>Viral Nonstructural Proteins - antagonists &amp; inhibitors</subject><subject>Viral Nonstructural Proteins - chemistry</subject><subject>Viral Nonstructural Proteins - isolation &amp; purification</subject><subject>Viral Nonstructural Proteins - metabolism</subject><subject>Zika virus</subject><subject>Zika Virus - chemistry</subject><subject>Zika Virus - drug effects</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk8tu1DAUhiMEoqXwBggsISFYzOBLYjubSqXiMlLVSgywYGP5OuOSxIOdIPr2eGbSaoK6QFk4tr_z2_7POUXxHME5Igy9uw5D7GQz34TOziHikBL8oDhGNcEziiF5ePB_VDxJ6RrCinBKHxdHmDMIKa2OC7MMzdD70AEdOhdiK7eTBIIDP_xPCS6X-P3sckk2MQDZGeD7BHy39srvgtQN6GQ_RNmATJhB520XQwus8aqxYNPIrk9Pi0dONsk-G8eT4tvHD1_PP88urj4tzs8uZppVvJ85awyCpSVaV0ZhoytVEo2UdQxVVMEKSslLzZkptTLMoDozinHoNIeYGnJSvNzrbpqQxGhQEqhGjNaEcZKJxZ4wQV6LTfStjDciSC92CyGuhIy9140VVkJW8zo7hssS6YprpTCFXDknVc1s1jodTxtUa422XZ99mIhOdzq_FqvwW1QVJJjiLPBmFIjh12BTL1qftG2yZzYMu3tzXrKc7Iy--ge9_3UjtZL5AT7nM5-rt6LirKw5Kikqeabm91D5M7b1uQqs83l9EvB2EpCZ3v7pV3JISSyWX_6fvfo-ZV8fsGsrm36dxnJMU7DcgzqGlKJ1dyYjKLbNcOuG2DaDGJshh704TNBd0G31k7-SnQV2</recordid><startdate>20170710</startdate><enddate>20170710</enddate><creator>Roy, Amrita</creator><creator>Lim, Liangzhong</creator><creator>Srivastava, Shagun</creator><creator>Lu, Yimei</creator><creator>Song, Jianxing</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0224-6322</orcidid></search><sort><creationdate>20170710</creationdate><title>Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from edible plants</title><author>Roy, Amrita ; Lim, Liangzhong ; Srivastava, Shagun ; Lu, Yimei ; Song, Jianxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-fedd104e3cc5db2dc5b43c1bef7156b050aa84c87d4cbd7d192dcb780fc8026d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Allosteric properties</topic><topic>Binding Sites</topic><topic>Biocatalysis - drug effects</topic><topic>Biological Products - chemistry</topic><topic>Biological Products - pharmacology</topic><topic>Biology and life sciences</topic><topic>Biophysical Phenomena - drug effects</topic><topic>Buffers</topic><topic>Catalysis</topic><topic>Cloning, Molecular</topic><topic>Conformation</topic><topic>Dengue fever</topic><topic>Drug development</topic><topic>Drug discovery</topic><topic>Drugs</topic><topic>E coli</topic><topic>Encephalitis</topic><topic>Enzymes</topic><topic>Epidemics</topic><topic>Flavonoids</topic><topic>Fruits</topic><topic>Genomes</topic><topic>Guillain-Barre syndrome</topic><topic>Hepatitis</topic><topic>Hydrogen Bonding</topic><topic>Immunoglobulins</topic><topic>Infections</topic><topic>Inhibitors</topic><topic>Kinetics</topic><topic>Magnetic resonance spectroscopy</topic><topic>Marking</topic><topic>Medicine and Health Sciences</topic><topic>Microencephaly</topic><topic>Models, Molecular</topic><topic>Molecular docking</topic><topic>Molecular structure</topic><topic>Mutation</topic><topic>Natural products</topic><topic>Neonates</topic><topic>NMR spectroscopy</topic><topic>Pancreas</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Plants (botany)</topic><topic>Plants, Edible - chemistry</topic><topic>Product inhibition</topic><topic>Protease</topic><topic>Protein Conformation</topic><topic>Proteinase</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Public health</topic><topic>Replication</topic><topic>Research and analysis methods</topic><topic>Residues</topic><topic>RNA Helicases - antagonists &amp; inhibitors</topic><topic>RNA Helicases - chemistry</topic><topic>RNA Helicases - isolation &amp; purification</topic><topic>RNA Helicases - metabolism</topic><topic>Science</topic><topic>Serine</topic><topic>Serine Endopeptidases - chemistry</topic><topic>Serine Endopeptidases - isolation &amp; purification</topic><topic>Serine Endopeptidases - metabolism</topic><topic>Serine proteinase</topic><topic>Solutions</topic><topic>Spectroscopy</topic><topic>Structure</topic><topic>Studies</topic><topic>Trypsin</topic><topic>Trypsin inhibitors</topic><topic>Vector-borne diseases</topic><topic>Vegetables</topic><topic>Viral Nonstructural Proteins - antagonists &amp; inhibitors</topic><topic>Viral Nonstructural Proteins - chemistry</topic><topic>Viral Nonstructural Proteins - isolation &amp; purification</topic><topic>Viral Nonstructural Proteins - metabolism</topic><topic>Zika virus</topic><topic>Zika Virus - chemistry</topic><topic>Zika Virus - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Amrita</creatorcontrib><creatorcontrib>Lim, Liangzhong</creatorcontrib><creatorcontrib>Srivastava, Shagun</creatorcontrib><creatorcontrib>Lu, Yimei</creatorcontrib><creatorcontrib>Song, Jianxing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Amrita</au><au>Lim, Liangzhong</au><au>Srivastava, Shagun</au><au>Lu, Yimei</au><au>Song, Jianxing</au><au>Permyakov, Eugene A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from edible plants</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-07-10</date><risdate>2017</risdate><volume>12</volume><issue>7</issue><spage>e0180632</spage><epage>e0180632</epage><pages>e0180632-e0180632</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The recent Zika viral (ZIKV) epidemic has been associated with severe neurological pathologies such as neonatal microcephaly and Guillain-Barre syndrome but unfortunately no vaccine or medication is effectively available yet. Zika NS2B-NS3pro is essential for the proteolysis of the viral polyprotein and thereby viral replication. Thus NS2B-NS3pro represents an attractive target for anti-Zika drug discovery/design. Here, we have characterized the solution conformations and catalytic parameters of both linked and unlinked Zika NS2B-NS3pro complexes and found that the unlinked complex manifested well-dispersed NMR spectra. Subsequently with selective isotope-labeling using NMR spectroscopy, we demonstrated that C-terminal residues (R73-K100) of NS2B is highly disordered without any stable tertiary and secondary structures in the Zika NS2B-NS3pro complex in the free state. Upon binding to the well-characterized serine protease inhibitor, bovine pancreatic trypsin inhibitor (BPTI), only the extreme C-terminal residues (L86-K100) remain disordered. Additionally, we have identified five flavonoids and one natural phenol rich in edible plants including fruits and vegetables, which inhibit Zika NS2B-NS3pro in a non-competitive mode, with Ki ranging from 770 nM for Myricetin to 34.02 μM for Apigenin. Molecular docking showed that they all bind to a pocket on the back of the active site and their structure-activity relationship was elucidated. Our study provides valuable insights into the solution conformation of Zika NS2B-NS3pro and further deciphers its susceptibility towards allosteric inhibition by natural products. As these natural product inhibitors fundamentally differ from the currently-known active site inhibitors in terms of both inhibitory mode and chemical scaffold, our finding might open a new avenue for development of better allosteric inhibitors to fight ZIKV infection.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28700665</pmid><doi>10.1371/journal.pone.0180632</doi><tpages>e0180632</tpages><orcidid>https://orcid.org/0000-0003-0224-6322</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-07, Vol.12 (7), p.e0180632-e0180632
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1917693783
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Allosteric properties
Binding Sites
Biocatalysis - drug effects
Biological Products - chemistry
Biological Products - pharmacology
Biology and life sciences
Biophysical Phenomena - drug effects
Buffers
Catalysis
Cloning, Molecular
Conformation
Dengue fever
Drug development
Drug discovery
Drugs
E coli
Encephalitis
Enzymes
Epidemics
Flavonoids
Fruits
Genomes
Guillain-Barre syndrome
Hepatitis
Hydrogen Bonding
Immunoglobulins
Infections
Inhibitors
Kinetics
Magnetic resonance spectroscopy
Marking
Medicine and Health Sciences
Microencephaly
Models, Molecular
Molecular docking
Molecular structure
Mutation
Natural products
Neonates
NMR spectroscopy
Pancreas
Physical Sciences
Physiological aspects
Plants (botany)
Plants, Edible - chemistry
Product inhibition
Protease
Protein Conformation
Proteinase
Proteins
Proteolysis
Public health
Replication
Research and analysis methods
Residues
RNA Helicases - antagonists & inhibitors
RNA Helicases - chemistry
RNA Helicases - isolation & purification
RNA Helicases - metabolism
Science
Serine
Serine Endopeptidases - chemistry
Serine Endopeptidases - isolation & purification
Serine Endopeptidases - metabolism
Serine proteinase
Solutions
Spectroscopy
Structure
Studies
Trypsin
Trypsin inhibitors
Vector-borne diseases
Vegetables
Viral Nonstructural Proteins - antagonists & inhibitors
Viral Nonstructural Proteins - chemistry
Viral Nonstructural Proteins - isolation & purification
Viral Nonstructural Proteins - metabolism
Zika virus
Zika Virus - chemistry
Zika Virus - drug effects
title Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from edible plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20conformations%20of%20Zika%20NS2B-NS3pro%20and%20its%20inhibition%20by%20natural%20products%20from%20edible%20plants&rft.jtitle=PloS%20one&rft.au=Roy,%20Amrita&rft.date=2017-07-10&rft.volume=12&rft.issue=7&rft.spage=e0180632&rft.epage=e0180632&rft.pages=e0180632-e0180632&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0180632&rft_dat=%3Cgale_plos_%3EA498146148%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917693783&rft_id=info:pmid/28700665&rft_galeid=A498146148&rft_doaj_id=oai_doaj_org_article_ea079893862441c58cbb2608bffab97e&rfr_iscdi=true