Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from edible plants
The recent Zika viral (ZIKV) epidemic has been associated with severe neurological pathologies such as neonatal microcephaly and Guillain-Barre syndrome but unfortunately no vaccine or medication is effectively available yet. Zika NS2B-NS3pro is essential for the proteolysis of the viral polyprotein...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-07, Vol.12 (7), p.e0180632-e0180632 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0180632 |
---|---|
container_issue | 7 |
container_start_page | e0180632 |
container_title | PloS one |
container_volume | 12 |
creator | Roy, Amrita Lim, Liangzhong Srivastava, Shagun Lu, Yimei Song, Jianxing |
description | The recent Zika viral (ZIKV) epidemic has been associated with severe neurological pathologies such as neonatal microcephaly and Guillain-Barre syndrome but unfortunately no vaccine or medication is effectively available yet. Zika NS2B-NS3pro is essential for the proteolysis of the viral polyprotein and thereby viral replication. Thus NS2B-NS3pro represents an attractive target for anti-Zika drug discovery/design. Here, we have characterized the solution conformations and catalytic parameters of both linked and unlinked Zika NS2B-NS3pro complexes and found that the unlinked complex manifested well-dispersed NMR spectra. Subsequently with selective isotope-labeling using NMR spectroscopy, we demonstrated that C-terminal residues (R73-K100) of NS2B is highly disordered without any stable tertiary and secondary structures in the Zika NS2B-NS3pro complex in the free state. Upon binding to the well-characterized serine protease inhibitor, bovine pancreatic trypsin inhibitor (BPTI), only the extreme C-terminal residues (L86-K100) remain disordered. Additionally, we have identified five flavonoids and one natural phenol rich in edible plants including fruits and vegetables, which inhibit Zika NS2B-NS3pro in a non-competitive mode, with Ki ranging from 770 nM for Myricetin to 34.02 μM for Apigenin. Molecular docking showed that they all bind to a pocket on the back of the active site and their structure-activity relationship was elucidated. Our study provides valuable insights into the solution conformation of Zika NS2B-NS3pro and further deciphers its susceptibility towards allosteric inhibition by natural products. As these natural product inhibitors fundamentally differ from the currently-known active site inhibitors in terms of both inhibitory mode and chemical scaffold, our finding might open a new avenue for development of better allosteric inhibitors to fight ZIKV infection. |
doi_str_mv | 10.1371/journal.pone.0180632 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1917693783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498146148</galeid><doaj_id>oai_doaj_org_article_ea079893862441c58cbb2608bffab97e</doaj_id><sourcerecordid>A498146148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-fedd104e3cc5db2dc5b43c1bef7156b050aa84c87d4cbd7d192dcb780fc8026d3</originalsourceid><addsrcrecordid>eNqNk8tu1DAUhiMEoqXwBggsISFYzOBLYjubSqXiMlLVSgywYGP5OuOSxIOdIPr2eGbSaoK6QFk4tr_z2_7POUXxHME5Igy9uw5D7GQz34TOziHikBL8oDhGNcEziiF5ePB_VDxJ6RrCinBKHxdHmDMIKa2OC7MMzdD70AEdOhdiK7eTBIIDP_xPCS6X-P3sckk2MQDZGeD7BHy39srvgtQN6GQ_RNmATJhB520XQwus8aqxYNPIrk9Pi0dONsk-G8eT4tvHD1_PP88urj4tzs8uZppVvJ85awyCpSVaV0ZhoytVEo2UdQxVVMEKSslLzZkptTLMoDozinHoNIeYGnJSvNzrbpqQxGhQEqhGjNaEcZKJxZ4wQV6LTfStjDciSC92CyGuhIy9140VVkJW8zo7hssS6YprpTCFXDknVc1s1jodTxtUa422XZ99mIhOdzq_FqvwW1QVJJjiLPBmFIjh12BTL1qftG2yZzYMu3tzXrKc7Iy--ge9_3UjtZL5AT7nM5-rt6LirKw5Kikqeabm91D5M7b1uQqs83l9EvB2EpCZ3v7pV3JISSyWX_6fvfo-ZV8fsGsrm36dxnJMU7DcgzqGlKJ1dyYjKLbNcOuG2DaDGJshh704TNBd0G31k7-SnQV2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917693783</pqid></control><display><type>article</type><title>Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from edible plants</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Roy, Amrita ; Lim, Liangzhong ; Srivastava, Shagun ; Lu, Yimei ; Song, Jianxing</creator><contributor>Permyakov, Eugene A.</contributor><creatorcontrib>Roy, Amrita ; Lim, Liangzhong ; Srivastava, Shagun ; Lu, Yimei ; Song, Jianxing ; Permyakov, Eugene A.</creatorcontrib><description>The recent Zika viral (ZIKV) epidemic has been associated with severe neurological pathologies such as neonatal microcephaly and Guillain-Barre syndrome but unfortunately no vaccine or medication is effectively available yet. Zika NS2B-NS3pro is essential for the proteolysis of the viral polyprotein and thereby viral replication. Thus NS2B-NS3pro represents an attractive target for anti-Zika drug discovery/design. Here, we have characterized the solution conformations and catalytic parameters of both linked and unlinked Zika NS2B-NS3pro complexes and found that the unlinked complex manifested well-dispersed NMR spectra. Subsequently with selective isotope-labeling using NMR spectroscopy, we demonstrated that C-terminal residues (R73-K100) of NS2B is highly disordered without any stable tertiary and secondary structures in the Zika NS2B-NS3pro complex in the free state. Upon binding to the well-characterized serine protease inhibitor, bovine pancreatic trypsin inhibitor (BPTI), only the extreme C-terminal residues (L86-K100) remain disordered. Additionally, we have identified five flavonoids and one natural phenol rich in edible plants including fruits and vegetables, which inhibit Zika NS2B-NS3pro in a non-competitive mode, with Ki ranging from 770 nM for Myricetin to 34.02 μM for Apigenin. Molecular docking showed that they all bind to a pocket on the back of the active site and their structure-activity relationship was elucidated. Our study provides valuable insights into the solution conformation of Zika NS2B-NS3pro and further deciphers its susceptibility towards allosteric inhibition by natural products. As these natural product inhibitors fundamentally differ from the currently-known active site inhibitors in terms of both inhibitory mode and chemical scaffold, our finding might open a new avenue for development of better allosteric inhibitors to fight ZIKV infection.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0180632</identifier><identifier>PMID: 28700665</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Allosteric properties ; Binding Sites ; Biocatalysis - drug effects ; Biological Products - chemistry ; Biological Products - pharmacology ; Biology and life sciences ; Biophysical Phenomena - drug effects ; Buffers ; Catalysis ; Cloning, Molecular ; Conformation ; Dengue fever ; Drug development ; Drug discovery ; Drugs ; E coli ; Encephalitis ; Enzymes ; Epidemics ; Flavonoids ; Fruits ; Genomes ; Guillain-Barre syndrome ; Hepatitis ; Hydrogen Bonding ; Immunoglobulins ; Infections ; Inhibitors ; Kinetics ; Magnetic resonance spectroscopy ; Marking ; Medicine and Health Sciences ; Microencephaly ; Models, Molecular ; Molecular docking ; Molecular structure ; Mutation ; Natural products ; Neonates ; NMR spectroscopy ; Pancreas ; Physical Sciences ; Physiological aspects ; Plants (botany) ; Plants, Edible - chemistry ; Product inhibition ; Protease ; Protein Conformation ; Proteinase ; Proteins ; Proteolysis ; Public health ; Replication ; Research and analysis methods ; Residues ; RNA Helicases - antagonists & inhibitors ; RNA Helicases - chemistry ; RNA Helicases - isolation & purification ; RNA Helicases - metabolism ; Science ; Serine ; Serine Endopeptidases - chemistry ; Serine Endopeptidases - isolation & purification ; Serine Endopeptidases - metabolism ; Serine proteinase ; Solutions ; Spectroscopy ; Structure ; Studies ; Trypsin ; Trypsin inhibitors ; Vector-borne diseases ; Vegetables ; Viral Nonstructural Proteins - antagonists & inhibitors ; Viral Nonstructural Proteins - chemistry ; Viral Nonstructural Proteins - isolation & purification ; Viral Nonstructural Proteins - metabolism ; Zika virus ; Zika Virus - chemistry ; Zika Virus - drug effects</subject><ispartof>PloS one, 2017-07, Vol.12 (7), p.e0180632-e0180632</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Roy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Roy et al 2017 Roy et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-fedd104e3cc5db2dc5b43c1bef7156b050aa84c87d4cbd7d192dcb780fc8026d3</citedby><cites>FETCH-LOGICAL-c758t-fedd104e3cc5db2dc5b43c1bef7156b050aa84c87d4cbd7d192dcb780fc8026d3</cites><orcidid>0000-0003-0224-6322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5503262/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5503262/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2101,2927,23865,27923,27924,53790,53792,79471,79472</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28700665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Permyakov, Eugene A.</contributor><creatorcontrib>Roy, Amrita</creatorcontrib><creatorcontrib>Lim, Liangzhong</creatorcontrib><creatorcontrib>Srivastava, Shagun</creatorcontrib><creatorcontrib>Lu, Yimei</creatorcontrib><creatorcontrib>Song, Jianxing</creatorcontrib><title>Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from edible plants</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The recent Zika viral (ZIKV) epidemic has been associated with severe neurological pathologies such as neonatal microcephaly and Guillain-Barre syndrome but unfortunately no vaccine or medication is effectively available yet. Zika NS2B-NS3pro is essential for the proteolysis of the viral polyprotein and thereby viral replication. Thus NS2B-NS3pro represents an attractive target for anti-Zika drug discovery/design. Here, we have characterized the solution conformations and catalytic parameters of both linked and unlinked Zika NS2B-NS3pro complexes and found that the unlinked complex manifested well-dispersed NMR spectra. Subsequently with selective isotope-labeling using NMR spectroscopy, we demonstrated that C-terminal residues (R73-K100) of NS2B is highly disordered without any stable tertiary and secondary structures in the Zika NS2B-NS3pro complex in the free state. Upon binding to the well-characterized serine protease inhibitor, bovine pancreatic trypsin inhibitor (BPTI), only the extreme C-terminal residues (L86-K100) remain disordered. Additionally, we have identified five flavonoids and one natural phenol rich in edible plants including fruits and vegetables, which inhibit Zika NS2B-NS3pro in a non-competitive mode, with Ki ranging from 770 nM for Myricetin to 34.02 μM for Apigenin. Molecular docking showed that they all bind to a pocket on the back of the active site and their structure-activity relationship was elucidated. Our study provides valuable insights into the solution conformation of Zika NS2B-NS3pro and further deciphers its susceptibility towards allosteric inhibition by natural products. As these natural product inhibitors fundamentally differ from the currently-known active site inhibitors in terms of both inhibitory mode and chemical scaffold, our finding might open a new avenue for development of better allosteric inhibitors to fight ZIKV infection.</description><subject>Allosteric properties</subject><subject>Binding Sites</subject><subject>Biocatalysis - drug effects</subject><subject>Biological Products - chemistry</subject><subject>Biological Products - pharmacology</subject><subject>Biology and life sciences</subject><subject>Biophysical Phenomena - drug effects</subject><subject>Buffers</subject><subject>Catalysis</subject><subject>Cloning, Molecular</subject><subject>Conformation</subject><subject>Dengue fever</subject><subject>Drug development</subject><subject>Drug discovery</subject><subject>Drugs</subject><subject>E coli</subject><subject>Encephalitis</subject><subject>Enzymes</subject><subject>Epidemics</subject><subject>Flavonoids</subject><subject>Fruits</subject><subject>Genomes</subject><subject>Guillain-Barre syndrome</subject><subject>Hepatitis</subject><subject>Hydrogen Bonding</subject><subject>Immunoglobulins</subject><subject>Infections</subject><subject>Inhibitors</subject><subject>Kinetics</subject><subject>Magnetic resonance spectroscopy</subject><subject>Marking</subject><subject>Medicine and Health Sciences</subject><subject>Microencephaly</subject><subject>Models, Molecular</subject><subject>Molecular docking</subject><subject>Molecular structure</subject><subject>Mutation</subject><subject>Natural products</subject><subject>Neonates</subject><subject>NMR spectroscopy</subject><subject>Pancreas</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Plants (botany)</subject><subject>Plants, Edible - chemistry</subject><subject>Product inhibition</subject><subject>Protease</subject><subject>Protein Conformation</subject><subject>Proteinase</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Public health</subject><subject>Replication</subject><subject>Research and analysis methods</subject><subject>Residues</subject><subject>RNA Helicases - antagonists & inhibitors</subject><subject>RNA Helicases - chemistry</subject><subject>RNA Helicases - isolation & purification</subject><subject>RNA Helicases - metabolism</subject><subject>Science</subject><subject>Serine</subject><subject>Serine Endopeptidases - chemistry</subject><subject>Serine Endopeptidases - isolation & purification</subject><subject>Serine Endopeptidases - metabolism</subject><subject>Serine proteinase</subject><subject>Solutions</subject><subject>Spectroscopy</subject><subject>Structure</subject><subject>Studies</subject><subject>Trypsin</subject><subject>Trypsin inhibitors</subject><subject>Vector-borne diseases</subject><subject>Vegetables</subject><subject>Viral Nonstructural Proteins - antagonists & inhibitors</subject><subject>Viral Nonstructural Proteins - chemistry</subject><subject>Viral Nonstructural Proteins - isolation & purification</subject><subject>Viral Nonstructural Proteins - metabolism</subject><subject>Zika virus</subject><subject>Zika Virus - chemistry</subject><subject>Zika Virus - drug effects</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk8tu1DAUhiMEoqXwBggsISFYzOBLYjubSqXiMlLVSgywYGP5OuOSxIOdIPr2eGbSaoK6QFk4tr_z2_7POUXxHME5Igy9uw5D7GQz34TOziHikBL8oDhGNcEziiF5ePB_VDxJ6RrCinBKHxdHmDMIKa2OC7MMzdD70AEdOhdiK7eTBIIDP_xPCS6X-P3sckk2MQDZGeD7BHy39srvgtQN6GQ_RNmATJhB520XQwus8aqxYNPIrk9Pi0dONsk-G8eT4tvHD1_PP88urj4tzs8uZppVvJ85awyCpSVaV0ZhoytVEo2UdQxVVMEKSslLzZkptTLMoDozinHoNIeYGnJSvNzrbpqQxGhQEqhGjNaEcZKJxZ4wQV6LTfStjDciSC92CyGuhIy9140VVkJW8zo7hssS6YprpTCFXDknVc1s1jodTxtUa422XZ99mIhOdzq_FqvwW1QVJJjiLPBmFIjh12BTL1qftG2yZzYMu3tzXrKc7Iy--ge9_3UjtZL5AT7nM5-rt6LirKw5Kikqeabm91D5M7b1uQqs83l9EvB2EpCZ3v7pV3JISSyWX_6fvfo-ZV8fsGsrm36dxnJMU7DcgzqGlKJ1dyYjKLbNcOuG2DaDGJshh704TNBd0G31k7-SnQV2</recordid><startdate>20170710</startdate><enddate>20170710</enddate><creator>Roy, Amrita</creator><creator>Lim, Liangzhong</creator><creator>Srivastava, Shagun</creator><creator>Lu, Yimei</creator><creator>Song, Jianxing</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0224-6322</orcidid></search><sort><creationdate>20170710</creationdate><title>Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from edible plants</title><author>Roy, Amrita ; Lim, Liangzhong ; Srivastava, Shagun ; Lu, Yimei ; Song, Jianxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-fedd104e3cc5db2dc5b43c1bef7156b050aa84c87d4cbd7d192dcb780fc8026d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Allosteric properties</topic><topic>Binding Sites</topic><topic>Biocatalysis - drug effects</topic><topic>Biological Products - chemistry</topic><topic>Biological Products - pharmacology</topic><topic>Biology and life sciences</topic><topic>Biophysical Phenomena - drug effects</topic><topic>Buffers</topic><topic>Catalysis</topic><topic>Cloning, Molecular</topic><topic>Conformation</topic><topic>Dengue fever</topic><topic>Drug development</topic><topic>Drug discovery</topic><topic>Drugs</topic><topic>E coli</topic><topic>Encephalitis</topic><topic>Enzymes</topic><topic>Epidemics</topic><topic>Flavonoids</topic><topic>Fruits</topic><topic>Genomes</topic><topic>Guillain-Barre syndrome</topic><topic>Hepatitis</topic><topic>Hydrogen Bonding</topic><topic>Immunoglobulins</topic><topic>Infections</topic><topic>Inhibitors</topic><topic>Kinetics</topic><topic>Magnetic resonance spectroscopy</topic><topic>Marking</topic><topic>Medicine and Health Sciences</topic><topic>Microencephaly</topic><topic>Models, Molecular</topic><topic>Molecular docking</topic><topic>Molecular structure</topic><topic>Mutation</topic><topic>Natural products</topic><topic>Neonates</topic><topic>NMR spectroscopy</topic><topic>Pancreas</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Plants (botany)</topic><topic>Plants, Edible - chemistry</topic><topic>Product inhibition</topic><topic>Protease</topic><topic>Protein Conformation</topic><topic>Proteinase</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Public health</topic><topic>Replication</topic><topic>Research and analysis methods</topic><topic>Residues</topic><topic>RNA Helicases - antagonists & inhibitors</topic><topic>RNA Helicases - chemistry</topic><topic>RNA Helicases - isolation & purification</topic><topic>RNA Helicases - metabolism</topic><topic>Science</topic><topic>Serine</topic><topic>Serine Endopeptidases - chemistry</topic><topic>Serine Endopeptidases - isolation & purification</topic><topic>Serine Endopeptidases - metabolism</topic><topic>Serine proteinase</topic><topic>Solutions</topic><topic>Spectroscopy</topic><topic>Structure</topic><topic>Studies</topic><topic>Trypsin</topic><topic>Trypsin inhibitors</topic><topic>Vector-borne diseases</topic><topic>Vegetables</topic><topic>Viral Nonstructural Proteins - antagonists & inhibitors</topic><topic>Viral Nonstructural Proteins - chemistry</topic><topic>Viral Nonstructural Proteins - isolation & purification</topic><topic>Viral Nonstructural Proteins - metabolism</topic><topic>Zika virus</topic><topic>Zika Virus - chemistry</topic><topic>Zika Virus - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Amrita</creatorcontrib><creatorcontrib>Lim, Liangzhong</creatorcontrib><creatorcontrib>Srivastava, Shagun</creatorcontrib><creatorcontrib>Lu, Yimei</creatorcontrib><creatorcontrib>Song, Jianxing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Amrita</au><au>Lim, Liangzhong</au><au>Srivastava, Shagun</au><au>Lu, Yimei</au><au>Song, Jianxing</au><au>Permyakov, Eugene A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from edible plants</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-07-10</date><risdate>2017</risdate><volume>12</volume><issue>7</issue><spage>e0180632</spage><epage>e0180632</epage><pages>e0180632-e0180632</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The recent Zika viral (ZIKV) epidemic has been associated with severe neurological pathologies such as neonatal microcephaly and Guillain-Barre syndrome but unfortunately no vaccine or medication is effectively available yet. Zika NS2B-NS3pro is essential for the proteolysis of the viral polyprotein and thereby viral replication. Thus NS2B-NS3pro represents an attractive target for anti-Zika drug discovery/design. Here, we have characterized the solution conformations and catalytic parameters of both linked and unlinked Zika NS2B-NS3pro complexes and found that the unlinked complex manifested well-dispersed NMR spectra. Subsequently with selective isotope-labeling using NMR spectroscopy, we demonstrated that C-terminal residues (R73-K100) of NS2B is highly disordered without any stable tertiary and secondary structures in the Zika NS2B-NS3pro complex in the free state. Upon binding to the well-characterized serine protease inhibitor, bovine pancreatic trypsin inhibitor (BPTI), only the extreme C-terminal residues (L86-K100) remain disordered. Additionally, we have identified five flavonoids and one natural phenol rich in edible plants including fruits and vegetables, which inhibit Zika NS2B-NS3pro in a non-competitive mode, with Ki ranging from 770 nM for Myricetin to 34.02 μM for Apigenin. Molecular docking showed that they all bind to a pocket on the back of the active site and their structure-activity relationship was elucidated. Our study provides valuable insights into the solution conformation of Zika NS2B-NS3pro and further deciphers its susceptibility towards allosteric inhibition by natural products. As these natural product inhibitors fundamentally differ from the currently-known active site inhibitors in terms of both inhibitory mode and chemical scaffold, our finding might open a new avenue for development of better allosteric inhibitors to fight ZIKV infection.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28700665</pmid><doi>10.1371/journal.pone.0180632</doi><tpages>e0180632</tpages><orcidid>https://orcid.org/0000-0003-0224-6322</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-07, Vol.12 (7), p.e0180632-e0180632 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1917693783 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Allosteric properties Binding Sites Biocatalysis - drug effects Biological Products - chemistry Biological Products - pharmacology Biology and life sciences Biophysical Phenomena - drug effects Buffers Catalysis Cloning, Molecular Conformation Dengue fever Drug development Drug discovery Drugs E coli Encephalitis Enzymes Epidemics Flavonoids Fruits Genomes Guillain-Barre syndrome Hepatitis Hydrogen Bonding Immunoglobulins Infections Inhibitors Kinetics Magnetic resonance spectroscopy Marking Medicine and Health Sciences Microencephaly Models, Molecular Molecular docking Molecular structure Mutation Natural products Neonates NMR spectroscopy Pancreas Physical Sciences Physiological aspects Plants (botany) Plants, Edible - chemistry Product inhibition Protease Protein Conformation Proteinase Proteins Proteolysis Public health Replication Research and analysis methods Residues RNA Helicases - antagonists & inhibitors RNA Helicases - chemistry RNA Helicases - isolation & purification RNA Helicases - metabolism Science Serine Serine Endopeptidases - chemistry Serine Endopeptidases - isolation & purification Serine Endopeptidases - metabolism Serine proteinase Solutions Spectroscopy Structure Studies Trypsin Trypsin inhibitors Vector-borne diseases Vegetables Viral Nonstructural Proteins - antagonists & inhibitors Viral Nonstructural Proteins - chemistry Viral Nonstructural Proteins - isolation & purification Viral Nonstructural Proteins - metabolism Zika virus Zika Virus - chemistry Zika Virus - drug effects |
title | Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from edible plants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20conformations%20of%20Zika%20NS2B-NS3pro%20and%20its%20inhibition%20by%20natural%20products%20from%20edible%20plants&rft.jtitle=PloS%20one&rft.au=Roy,%20Amrita&rft.date=2017-07-10&rft.volume=12&rft.issue=7&rft.spage=e0180632&rft.epage=e0180632&rft.pages=e0180632-e0180632&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0180632&rft_dat=%3Cgale_plos_%3EA498146148%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917693783&rft_id=info:pmid/28700665&rft_galeid=A498146148&rft_doaj_id=oai_doaj_org_article_ea079893862441c58cbb2608bffab97e&rfr_iscdi=true |