DNA isolation protocol effects on nuclear DNA analysis by microarrays, droplet digital PCR, and whole genome sequencing, and on mitochondrial DNA copy number estimation

Potential bias introduced during DNA isolation is inadequately explored, although it could have significant impact on downstream analysis. To investigate this in human brain, we isolated DNA from cerebellum and frontal cortex using spin columns under different conditions, and salting-out. We first a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-07, Vol.12 (7), p.e0180467-e0180467
Hauptverfasser: Nacheva, Elizabeth, Mokretar, Katya, Soenmez, Aynur, Pittman, Alan M, Grace, Colin, Valli, Roberto, Ejaz, Ayesha, Vattathil, Selina, Maserati, Emanuela, Houlden, Henry, Taanman, Jan-Willem, Schapira, Anthony H, Proukakis, Christos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0180467
container_issue 7
container_start_page e0180467
container_title PloS one
container_volume 12
creator Nacheva, Elizabeth
Mokretar, Katya
Soenmez, Aynur
Pittman, Alan M
Grace, Colin
Valli, Roberto
Ejaz, Ayesha
Vattathil, Selina
Maserati, Emanuela
Houlden, Henry
Taanman, Jan-Willem
Schapira, Anthony H
Proukakis, Christos
description Potential bias introduced during DNA isolation is inadequately explored, although it could have significant impact on downstream analysis. To investigate this in human brain, we isolated DNA from cerebellum and frontal cortex using spin columns under different conditions, and salting-out. We first analysed DNA using array CGH, which revealed a striking wave pattern suggesting primarily GC-rich cerebellar losses, even against matched frontal cortex DNA, with a similar pattern on a SNP array. The aCGH changes varied with the isolation protocol. Droplet digital PCR of two genes also showed protocol-dependent losses. Whole genome sequencing showed GC-dependent variation in coverage with spin column isolation from cerebellum. We also extracted and sequenced DNA from substantia nigra using salting-out and phenol / chloroform. The mtDNA copy number, assessed by reads mapping to the mitochondrial genome, was higher in substantia nigra when using phenol / chloroform. We thus provide evidence for significant method-dependent bias in DNA isolation from human brain, as reported in rat tissues. This may contribute to array "waves", and could affect copy number determination, particularly if mosaicism is being sought, and sequencing coverage. Variations in isolation protocol may also affect apparent mtDNA abundance.
doi_str_mv 10.1371/journal.pone.0180467
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1916680780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A543296632</galeid><doaj_id>oai_doaj_org_article_85a2ca19810844f4bdb02cb93582722d</doaj_id><sourcerecordid>A543296632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-558778c78000c19725d3fa3975540de183a2201b44e3a8ca5b4ac14502cfa3723</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEoqXwBggsVUIgdRcf4sS5QarKaaWKonK4tRzHyXrlxIvtAPtGPCaT7rbqol6gXCQaf_P_48lMlj0leE5YSV6v_BgG5eZrP5g5JgLnRXkvOyQVo7OCYnb_1vdB9ijGFcaciaJ4mB1QUQiGy_Iw-_P20ymy0TuVrB_QOvjktXfItK3RKSKIDaN2RgU0kQocN9FGVG9Qb3XwKgS1iSeoCX7tTEKN7WxSDn0-uzwBukG_lt4Z1JnB9wZF82M0g7ZDtz0E9d6C4dIPTbCQNnlov96AaV-bgExMtr8q7XH2oFUumie791H27f27r2cfZ-cXHxZnp-czXVQ0zTgXZSl0KTDGmlQl5Q1rFatKznPcGCKYohSTOs8NU0IrXudKk5xjqgErKTvKnm91185HuWtylKQiRSEw6AKx2BKNVyu5DlBg2EivrLwK-NBJFZKFpknBFdWKVIJgkedtXjc1GNUV44KWlDag9WbnNta9abQZUlBuT3T_ZLBL2fmfknOMWT6V-3InEDz0NibZ26iNc2owfryqu2SFIMVU9_E_6N2321GdggvYofXgqydRecpzRquiYJPt_A4KnsbAWMBEthbiewmv9hKASeZ36tQYo1x8ufx_9uL7PvviFrs0yqUlTPM4jUzcB_MtCEMbYzDtTZMJltNCXXdDTgsldwsFac9u_6CbpOsNYn8BI3gbaA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916680780</pqid></control><display><type>article</type><title>DNA isolation protocol effects on nuclear DNA analysis by microarrays, droplet digital PCR, and whole genome sequencing, and on mitochondrial DNA copy number estimation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Nacheva, Elizabeth ; Mokretar, Katya ; Soenmez, Aynur ; Pittman, Alan M ; Grace, Colin ; Valli, Roberto ; Ejaz, Ayesha ; Vattathil, Selina ; Maserati, Emanuela ; Houlden, Henry ; Taanman, Jan-Willem ; Schapira, Anthony H ; Proukakis, Christos</creator><contributor>Seo, Jeong-Sun</contributor><creatorcontrib>Nacheva, Elizabeth ; Mokretar, Katya ; Soenmez, Aynur ; Pittman, Alan M ; Grace, Colin ; Valli, Roberto ; Ejaz, Ayesha ; Vattathil, Selina ; Maserati, Emanuela ; Houlden, Henry ; Taanman, Jan-Willem ; Schapira, Anthony H ; Proukakis, Christos ; Seo, Jeong-Sun</creatorcontrib><description>Potential bias introduced during DNA isolation is inadequately explored, although it could have significant impact on downstream analysis. To investigate this in human brain, we isolated DNA from cerebellum and frontal cortex using spin columns under different conditions, and salting-out. We first analysed DNA using array CGH, which revealed a striking wave pattern suggesting primarily GC-rich cerebellar losses, even against matched frontal cortex DNA, with a similar pattern on a SNP array. The aCGH changes varied with the isolation protocol. Droplet digital PCR of two genes also showed protocol-dependent losses. Whole genome sequencing showed GC-dependent variation in coverage with spin column isolation from cerebellum. We also extracted and sequenced DNA from substantia nigra using salting-out and phenol / chloroform. The mtDNA copy number, assessed by reads mapping to the mitochondrial genome, was higher in substantia nigra when using phenol / chloroform. We thus provide evidence for significant method-dependent bias in DNA isolation from human brain, as reported in rat tissues. This may contribute to array "waves", and could affect copy number determination, particularly if mosaicism is being sought, and sequencing coverage. Variations in isolation protocol may also affect apparent mtDNA abundance.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0180467</identifier><identifier>PMID: 28683077</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abundance ; Aged ; Aged, 80 and over ; Analysis ; Animal tissues ; Autopsy ; Base Composition ; Bias ; Biology and life sciences ; Bone marrow ; Brain ; Brain Chemistry ; Brain research ; Case-Control Studies ; Cell Nucleus - chemistry ; Cell Nucleus - metabolism ; Cerebellum ; Cerebellum - chemistry ; Cerebellum - metabolism ; Chloroform ; Chromosomes ; College campuses ; Comparative Genomic Hybridization ; Copy number ; Cortex (frontal) ; Cytogenetics ; Deoxyribonucleic acid ; DNA ; DNA Copy Number Variations ; DNA microarrays ; DNA sequencing ; DNA, Mitochondrial - genetics ; DNA, Mitochondrial - isolation &amp; purification ; Female ; Frontal Lobe - chemistry ; Frontal Lobe - metabolism ; Gene mapping ; Gene sequencing ; Genes ; Genetic testing ; Genome, Human ; Genomes ; Genomics ; Hematology ; High-Throughput Nucleotide Sequencing ; Humans ; Impact analysis ; Male ; Mapping ; Medicine and Health Sciences ; Methods ; Microarray Analysis ; Middle Aged ; Mitochondria - chemistry ; Mitochondria - metabolism ; Mitochondrial DNA ; Mosaicism ; Neurology ; Neurosciences ; Nucleotide sequence ; Oligonucleotide Array Sequence Analysis ; Parkinson Disease - metabolism ; Parkinson Disease - pathology ; Phenols ; Physical Sciences ; Polymerase chain reaction ; Polymerase Chain Reaction - methods ; Polymerase Chain Reaction - standards ; Polymorphism, Single Nucleotide ; Research and analysis methods ; Salting ; Single-nucleotide polymorphism ; Stem cells ; Substantia nigra ; Substantia Nigra - chemistry ; Substantia Nigra - metabolism ; Tissues</subject><ispartof>PloS one, 2017-07, Vol.12 (7), p.e0180467-e0180467</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Nacheva et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Nacheva et al 2017 Nacheva et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-558778c78000c19725d3fa3975540de183a2201b44e3a8ca5b4ac14502cfa3723</citedby><cites>FETCH-LOGICAL-c692t-558778c78000c19725d3fa3975540de183a2201b44e3a8ca5b4ac14502cfa3723</cites><orcidid>0000-0001-6423-6539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500342/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500342/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23868,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28683077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Seo, Jeong-Sun</contributor><creatorcontrib>Nacheva, Elizabeth</creatorcontrib><creatorcontrib>Mokretar, Katya</creatorcontrib><creatorcontrib>Soenmez, Aynur</creatorcontrib><creatorcontrib>Pittman, Alan M</creatorcontrib><creatorcontrib>Grace, Colin</creatorcontrib><creatorcontrib>Valli, Roberto</creatorcontrib><creatorcontrib>Ejaz, Ayesha</creatorcontrib><creatorcontrib>Vattathil, Selina</creatorcontrib><creatorcontrib>Maserati, Emanuela</creatorcontrib><creatorcontrib>Houlden, Henry</creatorcontrib><creatorcontrib>Taanman, Jan-Willem</creatorcontrib><creatorcontrib>Schapira, Anthony H</creatorcontrib><creatorcontrib>Proukakis, Christos</creatorcontrib><title>DNA isolation protocol effects on nuclear DNA analysis by microarrays, droplet digital PCR, and whole genome sequencing, and on mitochondrial DNA copy number estimation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Potential bias introduced during DNA isolation is inadequately explored, although it could have significant impact on downstream analysis. To investigate this in human brain, we isolated DNA from cerebellum and frontal cortex using spin columns under different conditions, and salting-out. We first analysed DNA using array CGH, which revealed a striking wave pattern suggesting primarily GC-rich cerebellar losses, even against matched frontal cortex DNA, with a similar pattern on a SNP array. The aCGH changes varied with the isolation protocol. Droplet digital PCR of two genes also showed protocol-dependent losses. Whole genome sequencing showed GC-dependent variation in coverage with spin column isolation from cerebellum. We also extracted and sequenced DNA from substantia nigra using salting-out and phenol / chloroform. The mtDNA copy number, assessed by reads mapping to the mitochondrial genome, was higher in substantia nigra when using phenol / chloroform. We thus provide evidence for significant method-dependent bias in DNA isolation from human brain, as reported in rat tissues. This may contribute to array "waves", and could affect copy number determination, particularly if mosaicism is being sought, and sequencing coverage. Variations in isolation protocol may also affect apparent mtDNA abundance.</description><subject>Abundance</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Analysis</subject><subject>Animal tissues</subject><subject>Autopsy</subject><subject>Base Composition</subject><subject>Bias</subject><subject>Biology and life sciences</subject><subject>Bone marrow</subject><subject>Brain</subject><subject>Brain Chemistry</subject><subject>Brain research</subject><subject>Case-Control Studies</subject><subject>Cell Nucleus - chemistry</subject><subject>Cell Nucleus - metabolism</subject><subject>Cerebellum</subject><subject>Cerebellum - chemistry</subject><subject>Cerebellum - metabolism</subject><subject>Chloroform</subject><subject>Chromosomes</subject><subject>College campuses</subject><subject>Comparative Genomic Hybridization</subject><subject>Copy number</subject><subject>Cortex (frontal)</subject><subject>Cytogenetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Copy Number Variations</subject><subject>DNA microarrays</subject><subject>DNA sequencing</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Mitochondrial - isolation &amp; purification</subject><subject>Female</subject><subject>Frontal Lobe - chemistry</subject><subject>Frontal Lobe - metabolism</subject><subject>Gene mapping</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic testing</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hematology</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Impact analysis</subject><subject>Male</subject><subject>Mapping</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Microarray Analysis</subject><subject>Middle Aged</subject><subject>Mitochondria - chemistry</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Mosaicism</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Nucleotide sequence</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Parkinson Disease - metabolism</subject><subject>Parkinson Disease - pathology</subject><subject>Phenols</subject><subject>Physical Sciences</subject><subject>Polymerase chain reaction</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Polymerase Chain Reaction - standards</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Research and analysis methods</subject><subject>Salting</subject><subject>Single-nucleotide polymorphism</subject><subject>Stem cells</subject><subject>Substantia nigra</subject><subject>Substantia Nigra - chemistry</subject><subject>Substantia Nigra - metabolism</subject><subject>Tissues</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEoqXwBggsVUIgdRcf4sS5QarKaaWKonK4tRzHyXrlxIvtAPtGPCaT7rbqol6gXCQaf_P_48lMlj0leE5YSV6v_BgG5eZrP5g5JgLnRXkvOyQVo7OCYnb_1vdB9ijGFcaciaJ4mB1QUQiGy_Iw-_P20ymy0TuVrB_QOvjktXfItK3RKSKIDaN2RgU0kQocN9FGVG9Qb3XwKgS1iSeoCX7tTEKN7WxSDn0-uzwBukG_lt4Z1JnB9wZF82M0g7ZDtz0E9d6C4dIPTbCQNnlov96AaV-bgExMtr8q7XH2oFUumie791H27f27r2cfZ-cXHxZnp-czXVQ0zTgXZSl0KTDGmlQl5Q1rFatKznPcGCKYohSTOs8NU0IrXudKk5xjqgErKTvKnm91185HuWtylKQiRSEw6AKx2BKNVyu5DlBg2EivrLwK-NBJFZKFpknBFdWKVIJgkedtXjc1GNUV44KWlDag9WbnNta9abQZUlBuT3T_ZLBL2fmfknOMWT6V-3InEDz0NibZ26iNc2owfryqu2SFIMVU9_E_6N2321GdggvYofXgqydRecpzRquiYJPt_A4KnsbAWMBEthbiewmv9hKASeZ36tQYo1x8ufx_9uL7PvviFrs0yqUlTPM4jUzcB_MtCEMbYzDtTZMJltNCXXdDTgsldwsFac9u_6CbpOsNYn8BI3gbaA</recordid><startdate>20170706</startdate><enddate>20170706</enddate><creator>Nacheva, Elizabeth</creator><creator>Mokretar, Katya</creator><creator>Soenmez, Aynur</creator><creator>Pittman, Alan M</creator><creator>Grace, Colin</creator><creator>Valli, Roberto</creator><creator>Ejaz, Ayesha</creator><creator>Vattathil, Selina</creator><creator>Maserati, Emanuela</creator><creator>Houlden, Henry</creator><creator>Taanman, Jan-Willem</creator><creator>Schapira, Anthony H</creator><creator>Proukakis, Christos</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6423-6539</orcidid></search><sort><creationdate>20170706</creationdate><title>DNA isolation protocol effects on nuclear DNA analysis by microarrays, droplet digital PCR, and whole genome sequencing, and on mitochondrial DNA copy number estimation</title><author>Nacheva, Elizabeth ; Mokretar, Katya ; Soenmez, Aynur ; Pittman, Alan M ; Grace, Colin ; Valli, Roberto ; Ejaz, Ayesha ; Vattathil, Selina ; Maserati, Emanuela ; Houlden, Henry ; Taanman, Jan-Willem ; Schapira, Anthony H ; Proukakis, Christos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-558778c78000c19725d3fa3975540de183a2201b44e3a8ca5b4ac14502cfa3723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abundance</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Analysis</topic><topic>Animal tissues</topic><topic>Autopsy</topic><topic>Base Composition</topic><topic>Bias</topic><topic>Biology and life sciences</topic><topic>Bone marrow</topic><topic>Brain</topic><topic>Brain Chemistry</topic><topic>Brain research</topic><topic>Case-Control Studies</topic><topic>Cell Nucleus - chemistry</topic><topic>Cell Nucleus - metabolism</topic><topic>Cerebellum</topic><topic>Cerebellum - chemistry</topic><topic>Cerebellum - metabolism</topic><topic>Chloroform</topic><topic>Chromosomes</topic><topic>College campuses</topic><topic>Comparative Genomic Hybridization</topic><topic>Copy number</topic><topic>Cortex (frontal)</topic><topic>Cytogenetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Copy Number Variations</topic><topic>DNA microarrays</topic><topic>DNA sequencing</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Mitochondrial - isolation &amp; purification</topic><topic>Female</topic><topic>Frontal Lobe - chemistry</topic><topic>Frontal Lobe - metabolism</topic><topic>Gene mapping</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic testing</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hematology</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Impact analysis</topic><topic>Male</topic><topic>Mapping</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Microarray Analysis</topic><topic>Middle Aged</topic><topic>Mitochondria - chemistry</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Mosaicism</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Nucleotide sequence</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Parkinson Disease - metabolism</topic><topic>Parkinson Disease - pathology</topic><topic>Phenols</topic><topic>Physical Sciences</topic><topic>Polymerase chain reaction</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Polymerase Chain Reaction - standards</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Research and analysis methods</topic><topic>Salting</topic><topic>Single-nucleotide polymorphism</topic><topic>Stem cells</topic><topic>Substantia nigra</topic><topic>Substantia Nigra - chemistry</topic><topic>Substantia Nigra - metabolism</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nacheva, Elizabeth</creatorcontrib><creatorcontrib>Mokretar, Katya</creatorcontrib><creatorcontrib>Soenmez, Aynur</creatorcontrib><creatorcontrib>Pittman, Alan M</creatorcontrib><creatorcontrib>Grace, Colin</creatorcontrib><creatorcontrib>Valli, Roberto</creatorcontrib><creatorcontrib>Ejaz, Ayesha</creatorcontrib><creatorcontrib>Vattathil, Selina</creatorcontrib><creatorcontrib>Maserati, Emanuela</creatorcontrib><creatorcontrib>Houlden, Henry</creatorcontrib><creatorcontrib>Taanman, Jan-Willem</creatorcontrib><creatorcontrib>Schapira, Anthony H</creatorcontrib><creatorcontrib>Proukakis, Christos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nacheva, Elizabeth</au><au>Mokretar, Katya</au><au>Soenmez, Aynur</au><au>Pittman, Alan M</au><au>Grace, Colin</au><au>Valli, Roberto</au><au>Ejaz, Ayesha</au><au>Vattathil, Selina</au><au>Maserati, Emanuela</au><au>Houlden, Henry</au><au>Taanman, Jan-Willem</au><au>Schapira, Anthony H</au><au>Proukakis, Christos</au><au>Seo, Jeong-Sun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA isolation protocol effects on nuclear DNA analysis by microarrays, droplet digital PCR, and whole genome sequencing, and on mitochondrial DNA copy number estimation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-07-06</date><risdate>2017</risdate><volume>12</volume><issue>7</issue><spage>e0180467</spage><epage>e0180467</epage><pages>e0180467-e0180467</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Potential bias introduced during DNA isolation is inadequately explored, although it could have significant impact on downstream analysis. To investigate this in human brain, we isolated DNA from cerebellum and frontal cortex using spin columns under different conditions, and salting-out. We first analysed DNA using array CGH, which revealed a striking wave pattern suggesting primarily GC-rich cerebellar losses, even against matched frontal cortex DNA, with a similar pattern on a SNP array. The aCGH changes varied with the isolation protocol. Droplet digital PCR of two genes also showed protocol-dependent losses. Whole genome sequencing showed GC-dependent variation in coverage with spin column isolation from cerebellum. We also extracted and sequenced DNA from substantia nigra using salting-out and phenol / chloroform. The mtDNA copy number, assessed by reads mapping to the mitochondrial genome, was higher in substantia nigra when using phenol / chloroform. We thus provide evidence for significant method-dependent bias in DNA isolation from human brain, as reported in rat tissues. This may contribute to array "waves", and could affect copy number determination, particularly if mosaicism is being sought, and sequencing coverage. Variations in isolation protocol may also affect apparent mtDNA abundance.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28683077</pmid><doi>10.1371/journal.pone.0180467</doi><tpages>e0180467</tpages><orcidid>https://orcid.org/0000-0001-6423-6539</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-07, Vol.12 (7), p.e0180467-e0180467
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1916680780
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Abundance
Aged
Aged, 80 and over
Analysis
Animal tissues
Autopsy
Base Composition
Bias
Biology and life sciences
Bone marrow
Brain
Brain Chemistry
Brain research
Case-Control Studies
Cell Nucleus - chemistry
Cell Nucleus - metabolism
Cerebellum
Cerebellum - chemistry
Cerebellum - metabolism
Chloroform
Chromosomes
College campuses
Comparative Genomic Hybridization
Copy number
Cortex (frontal)
Cytogenetics
Deoxyribonucleic acid
DNA
DNA Copy Number Variations
DNA microarrays
DNA sequencing
DNA, Mitochondrial - genetics
DNA, Mitochondrial - isolation & purification
Female
Frontal Lobe - chemistry
Frontal Lobe - metabolism
Gene mapping
Gene sequencing
Genes
Genetic testing
Genome, Human
Genomes
Genomics
Hematology
High-Throughput Nucleotide Sequencing
Humans
Impact analysis
Male
Mapping
Medicine and Health Sciences
Methods
Microarray Analysis
Middle Aged
Mitochondria - chemistry
Mitochondria - metabolism
Mitochondrial DNA
Mosaicism
Neurology
Neurosciences
Nucleotide sequence
Oligonucleotide Array Sequence Analysis
Parkinson Disease - metabolism
Parkinson Disease - pathology
Phenols
Physical Sciences
Polymerase chain reaction
Polymerase Chain Reaction - methods
Polymerase Chain Reaction - standards
Polymorphism, Single Nucleotide
Research and analysis methods
Salting
Single-nucleotide polymorphism
Stem cells
Substantia nigra
Substantia Nigra - chemistry
Substantia Nigra - metabolism
Tissues
title DNA isolation protocol effects on nuclear DNA analysis by microarrays, droplet digital PCR, and whole genome sequencing, and on mitochondrial DNA copy number estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A51%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20isolation%20protocol%20effects%20on%20nuclear%20DNA%20analysis%20by%20microarrays,%20droplet%20digital%20PCR,%20and%20whole%20genome%20sequencing,%20and%20on%20mitochondrial%20DNA%20copy%20number%20estimation&rft.jtitle=PloS%20one&rft.au=Nacheva,%20Elizabeth&rft.date=2017-07-06&rft.volume=12&rft.issue=7&rft.spage=e0180467&rft.epage=e0180467&rft.pages=e0180467-e0180467&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0180467&rft_dat=%3Cgale_plos_%3EA543296632%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1916680780&rft_id=info:pmid/28683077&rft_galeid=A543296632&rft_doaj_id=oai_doaj_org_article_85a2ca19810844f4bdb02cb93582722d&rfr_iscdi=true