A two-step approach for fluidized bed granulation in pharmaceutical processing: Assessing different models for design and control

Various modeling techniques were used to understand fluidized bed granulation using a two-step approach. First, Plackett-Burman design (PBD) was used to identify the high-risk factors. Then, Box-Behnken design (BBD) was used to analyze and optimize those high-risk factors. The relationship between t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-06, Vol.12 (6), p.e0180209-e0180209
Hauptverfasser: Ming, Liangshan, Li, Zhe, Wu, Fei, Du, Ruofei, Feng, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0180209
container_issue 6
container_start_page e0180209
container_title PloS one
container_volume 12
creator Ming, Liangshan
Li, Zhe
Wu, Fei
Du, Ruofei
Feng, Yi
description Various modeling techniques were used to understand fluidized bed granulation using a two-step approach. First, Plackett-Burman design (PBD) was used to identify the high-risk factors. Then, Box-Behnken design (BBD) was used to analyze and optimize those high-risk factors. The relationship between the high-risk input variables (inlet air temperature X1, binder solution rate X3, and binder-to-powder ratio X5) and quality attributes (flowability Y1, temperature Y2, moisture content Y3, aggregation index Y4, and compactability Y5) of the process was investigated using response surface model (RSM), partial least squares method (PLS) and artificial neural network of multilayer perceptron (MLP). The morphological study of the granules was also investigated using a scanning electron microscope. The results showed that X1, X3, and X5 significantly affected the properties of granule. The RSM, PLS and MLP models were found to be useful statistical analysis tools for a better mechanistic understanding of granulation. The statistical analysis results showed that the RSM model had a better ability to fit the quality attributes of granules compared to the PLS and MLP models. Understanding the effect of process parameters on granule properties provides the basis for modulating the granulation parameters and optimizing the product performance at the early development stage of pharmaceutical products.
doi_str_mv 10.1371/journal.pone.0180209
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1914835953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A497380511</galeid><doaj_id>oai_doaj_org_article_6878901689684028be1b926e5be3d1ce</doaj_id><sourcerecordid>A497380511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-7f58e60d1c369724d5af5c7f12babbdcfe56204fc96b5e6e55afc83cba789fac3</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQDgujDjEnTdBofhGHxMrCw4O01pOlJJ0smqUnr7c1vbjrTXaayDxJCQvI7_5NzTk6WPSZ4SeiKvLryQ3DSLjvvYIlJhXPM72SnhNN8UeaY3j3an2QPYrzCmNGqLO9nJ3lackLYafZnjfoffhF76JDsuuCl2iLtA9J2MI35DQ2q02yDdIOVvfEOGYe6rQw7qWDojZIWJTMFMRrXvkbrGA9b1BitIYDr0c43YONetoFoWoeka5Dyrg_ePszuaWkjPJrWs-zLu7efzz8sLi7fb87XFwtV8rxfrDSroMQNUbTkq7xomNRMrTTJa1nXjdLAUqSFVrysGZTA0r2qqKrlquJaKnqWPT3odtZHMWUvCsJJUVHGGU3E5kA0Xl6JLpidDL-El0bsD3xohQwpYguirJIqJmXFy6rAeVUDqXmevNZA0xMhab2ZvA31DhqV0hCknYnOb5zZitZ_F6zgqTB5EngxCQT_bYDYi52JCqyVDvywfzejBcd0RJ_9g94e3US1MgVgnPbJrxpFxbrgK1phRkiilrdQaTSwM6lioE06nxm8nBmMVYWffSuHGMXm08f_Zy-_ztnnR-wWpO230dth_IJxDhYHUAUfYwB9k2SCxdgp19kQY6eIqVOS2ZPjAt0YXbcG_QsNxhCb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1914835953</pqid></control><display><type>article</type><title>A two-step approach for fluidized bed granulation in pharmaceutical processing: Assessing different models for design and control</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ming, Liangshan ; Li, Zhe ; Wu, Fei ; Du, Ruofei ; Feng, Yi</creator><contributor>Villarini, Mauro</contributor><creatorcontrib>Ming, Liangshan ; Li, Zhe ; Wu, Fei ; Du, Ruofei ; Feng, Yi ; Villarini, Mauro</creatorcontrib><description>Various modeling techniques were used to understand fluidized bed granulation using a two-step approach. First, Plackett-Burman design (PBD) was used to identify the high-risk factors. Then, Box-Behnken design (BBD) was used to analyze and optimize those high-risk factors. The relationship between the high-risk input variables (inlet air temperature X1, binder solution rate X3, and binder-to-powder ratio X5) and quality attributes (flowability Y1, temperature Y2, moisture content Y3, aggregation index Y4, and compactability Y5) of the process was investigated using response surface model (RSM), partial least squares method (PLS) and artificial neural network of multilayer perceptron (MLP). The morphological study of the granules was also investigated using a scanning electron microscope. The results showed that X1, X3, and X5 significantly affected the properties of granule. The RSM, PLS and MLP models were found to be useful statistical analysis tools for a better mechanistic understanding of granulation. The statistical analysis results showed that the RSM model had a better ability to fit the quality attributes of granules compared to the PLS and MLP models. Understanding the effect of process parameters on granule properties provides the basis for modulating the granulation parameters and optimizing the product performance at the early development stage of pharmaceutical products.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0180209</identifier><identifier>PMID: 28662115</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agglomeration ; Air temperature ; Artificial neural networks ; Biology and Life Sciences ; Chinese medicine ; Computer and Information Sciences ; Design ; Design analysis ; Design factors ; Design optimization ; Developmental stages ; Fluidized bed combustion ; Fluidized bed reactors ; Fluidized beds ; Granular materials ; Granulation ; Granules ; Least squares method ; Mathematical models ; Methods ; Microfluidics ; Microscopy, Electron, Scanning ; Models, Chemical ; Moisture content ; Neural networks ; Pharmaceuticals ; Physical Sciences ; Powder ; Powders (Particulate matter) ; Process parameters ; Quality management ; Research and Analysis Methods ; Risk analysis ; Risk factors ; Scanning electron microscopy ; Statistical analysis ; Statistics ; Technology, Pharmaceutical - methods ; Temperature effects</subject><ispartof>PloS one, 2017-06, Vol.12 (6), p.e0180209-e0180209</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Ming et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Ming et al 2017 Ming et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-7f58e60d1c369724d5af5c7f12babbdcfe56204fc96b5e6e55afc83cba789fac3</citedby><cites>FETCH-LOGICAL-c692t-7f58e60d1c369724d5af5c7f12babbdcfe56204fc96b5e6e55afc83cba789fac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491152/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491152/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28662115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Villarini, Mauro</contributor><creatorcontrib>Ming, Liangshan</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Wu, Fei</creatorcontrib><creatorcontrib>Du, Ruofei</creatorcontrib><creatorcontrib>Feng, Yi</creatorcontrib><title>A two-step approach for fluidized bed granulation in pharmaceutical processing: Assessing different models for design and control</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Various modeling techniques were used to understand fluidized bed granulation using a two-step approach. First, Plackett-Burman design (PBD) was used to identify the high-risk factors. Then, Box-Behnken design (BBD) was used to analyze and optimize those high-risk factors. The relationship between the high-risk input variables (inlet air temperature X1, binder solution rate X3, and binder-to-powder ratio X5) and quality attributes (flowability Y1, temperature Y2, moisture content Y3, aggregation index Y4, and compactability Y5) of the process was investigated using response surface model (RSM), partial least squares method (PLS) and artificial neural network of multilayer perceptron (MLP). The morphological study of the granules was also investigated using a scanning electron microscope. The results showed that X1, X3, and X5 significantly affected the properties of granule. The RSM, PLS and MLP models were found to be useful statistical analysis tools for a better mechanistic understanding of granulation. The statistical analysis results showed that the RSM model had a better ability to fit the quality attributes of granules compared to the PLS and MLP models. Understanding the effect of process parameters on granule properties provides the basis for modulating the granulation parameters and optimizing the product performance at the early development stage of pharmaceutical products.</description><subject>Agglomeration</subject><subject>Air temperature</subject><subject>Artificial neural networks</subject><subject>Biology and Life Sciences</subject><subject>Chinese medicine</subject><subject>Computer and Information Sciences</subject><subject>Design</subject><subject>Design analysis</subject><subject>Design factors</subject><subject>Design optimization</subject><subject>Developmental stages</subject><subject>Fluidized bed combustion</subject><subject>Fluidized bed reactors</subject><subject>Fluidized beds</subject><subject>Granular materials</subject><subject>Granulation</subject><subject>Granules</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Microfluidics</subject><subject>Microscopy, Electron, Scanning</subject><subject>Models, Chemical</subject><subject>Moisture content</subject><subject>Neural networks</subject><subject>Pharmaceuticals</subject><subject>Physical Sciences</subject><subject>Powder</subject><subject>Powders (Particulate matter)</subject><subject>Process parameters</subject><subject>Quality management</subject><subject>Research and Analysis Methods</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>Scanning electron microscopy</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Technology, Pharmaceutical - methods</subject><subject>Temperature effects</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQDgujDjEnTdBofhGHxMrCw4O01pOlJJ0smqUnr7c1vbjrTXaayDxJCQvI7_5NzTk6WPSZ4SeiKvLryQ3DSLjvvYIlJhXPM72SnhNN8UeaY3j3an2QPYrzCmNGqLO9nJ3lackLYafZnjfoffhF76JDsuuCl2iLtA9J2MI35DQ2q02yDdIOVvfEOGYe6rQw7qWDojZIWJTMFMRrXvkbrGA9b1BitIYDr0c43YONetoFoWoeka5Dyrg_ePszuaWkjPJrWs-zLu7efzz8sLi7fb87XFwtV8rxfrDSroMQNUbTkq7xomNRMrTTJa1nXjdLAUqSFVrysGZTA0r2qqKrlquJaKnqWPT3odtZHMWUvCsJJUVHGGU3E5kA0Xl6JLpidDL-El0bsD3xohQwpYguirJIqJmXFy6rAeVUDqXmevNZA0xMhab2ZvA31DhqV0hCknYnOb5zZitZ_F6zgqTB5EngxCQT_bYDYi52JCqyVDvywfzejBcd0RJ_9g94e3US1MgVgnPbJrxpFxbrgK1phRkiilrdQaTSwM6lioE06nxm8nBmMVYWffSuHGMXm08f_Zy-_ztnnR-wWpO230dth_IJxDhYHUAUfYwB9k2SCxdgp19kQY6eIqVOS2ZPjAt0YXbcG_QsNxhCb</recordid><startdate>20170629</startdate><enddate>20170629</enddate><creator>Ming, Liangshan</creator><creator>Li, Zhe</creator><creator>Wu, Fei</creator><creator>Du, Ruofei</creator><creator>Feng, Yi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170629</creationdate><title>A two-step approach for fluidized bed granulation in pharmaceutical processing: Assessing different models for design and control</title><author>Ming, Liangshan ; Li, Zhe ; Wu, Fei ; Du, Ruofei ; Feng, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-7f58e60d1c369724d5af5c7f12babbdcfe56204fc96b5e6e55afc83cba789fac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agglomeration</topic><topic>Air temperature</topic><topic>Artificial neural networks</topic><topic>Biology and Life Sciences</topic><topic>Chinese medicine</topic><topic>Computer and Information Sciences</topic><topic>Design</topic><topic>Design analysis</topic><topic>Design factors</topic><topic>Design optimization</topic><topic>Developmental stages</topic><topic>Fluidized bed combustion</topic><topic>Fluidized bed reactors</topic><topic>Fluidized beds</topic><topic>Granular materials</topic><topic>Granulation</topic><topic>Granules</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Microfluidics</topic><topic>Microscopy, Electron, Scanning</topic><topic>Models, Chemical</topic><topic>Moisture content</topic><topic>Neural networks</topic><topic>Pharmaceuticals</topic><topic>Physical Sciences</topic><topic>Powder</topic><topic>Powders (Particulate matter)</topic><topic>Process parameters</topic><topic>Quality management</topic><topic>Research and Analysis Methods</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>Scanning electron microscopy</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Technology, Pharmaceutical - methods</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ming, Liangshan</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Wu, Fei</creatorcontrib><creatorcontrib>Du, Ruofei</creatorcontrib><creatorcontrib>Feng, Yi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ming, Liangshan</au><au>Li, Zhe</au><au>Wu, Fei</au><au>Du, Ruofei</au><au>Feng, Yi</au><au>Villarini, Mauro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-step approach for fluidized bed granulation in pharmaceutical processing: Assessing different models for design and control</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-06-29</date><risdate>2017</risdate><volume>12</volume><issue>6</issue><spage>e0180209</spage><epage>e0180209</epage><pages>e0180209-e0180209</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Various modeling techniques were used to understand fluidized bed granulation using a two-step approach. First, Plackett-Burman design (PBD) was used to identify the high-risk factors. Then, Box-Behnken design (BBD) was used to analyze and optimize those high-risk factors. The relationship between the high-risk input variables (inlet air temperature X1, binder solution rate X3, and binder-to-powder ratio X5) and quality attributes (flowability Y1, temperature Y2, moisture content Y3, aggregation index Y4, and compactability Y5) of the process was investigated using response surface model (RSM), partial least squares method (PLS) and artificial neural network of multilayer perceptron (MLP). The morphological study of the granules was also investigated using a scanning electron microscope. The results showed that X1, X3, and X5 significantly affected the properties of granule. The RSM, PLS and MLP models were found to be useful statistical analysis tools for a better mechanistic understanding of granulation. The statistical analysis results showed that the RSM model had a better ability to fit the quality attributes of granules compared to the PLS and MLP models. Understanding the effect of process parameters on granule properties provides the basis for modulating the granulation parameters and optimizing the product performance at the early development stage of pharmaceutical products.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28662115</pmid><doi>10.1371/journal.pone.0180209</doi><tpages>e0180209</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-06, Vol.12 (6), p.e0180209-e0180209
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1914835953
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Agglomeration
Air temperature
Artificial neural networks
Biology and Life Sciences
Chinese medicine
Computer and Information Sciences
Design
Design analysis
Design factors
Design optimization
Developmental stages
Fluidized bed combustion
Fluidized bed reactors
Fluidized beds
Granular materials
Granulation
Granules
Least squares method
Mathematical models
Methods
Microfluidics
Microscopy, Electron, Scanning
Models, Chemical
Moisture content
Neural networks
Pharmaceuticals
Physical Sciences
Powder
Powders (Particulate matter)
Process parameters
Quality management
Research and Analysis Methods
Risk analysis
Risk factors
Scanning electron microscopy
Statistical analysis
Statistics
Technology, Pharmaceutical - methods
Temperature effects
title A two-step approach for fluidized bed granulation in pharmaceutical processing: Assessing different models for design and control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A50%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-step%20approach%20for%20fluidized%20bed%20granulation%20in%20pharmaceutical%20processing:%20Assessing%20different%20models%20for%20design%20and%20control&rft.jtitle=PloS%20one&rft.au=Ming,%20Liangshan&rft.date=2017-06-29&rft.volume=12&rft.issue=6&rft.spage=e0180209&rft.epage=e0180209&rft.pages=e0180209-e0180209&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0180209&rft_dat=%3Cgale_plos_%3EA497380511%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1914835953&rft_id=info:pmid/28662115&rft_galeid=A497380511&rft_doaj_id=oai_doaj_org_article_6878901689684028be1b926e5be3d1ce&rfr_iscdi=true