Bone marrow mesenchymal stem cell-derived vascular endothelial growth factor attenuates cardiac apoptosis via regulation of cardiac miRNA-23a and miRNA-92a in a rat model of myocardial infarction

Bone marrow-mesenchymal stem cell (BM-MSC) therapy improves the recovery of cardiac function after myocardial infarction (MI); however, the underlying molecular mechanisms are not completely understood. Recent studies have shown that microRNAs (miRNAs) modulate the pathophysiology of cardiovascular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-06, Vol.12 (6), p.e0179972-e0179972
Hauptverfasser: Song, Yi-Sun, Joo, Hyun-Woo, Park, In-Hwa, Shen, Guang-Yin, Lee, Yonggu, Shin, Jeong Hun, Kim, Hyuck, Kim, Kyung-Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0179972
container_issue 6
container_start_page e0179972
container_title PloS one
container_volume 12
creator Song, Yi-Sun
Joo, Hyun-Woo
Park, In-Hwa
Shen, Guang-Yin
Lee, Yonggu
Shin, Jeong Hun
Kim, Hyuck
Kim, Kyung-Soo
description Bone marrow-mesenchymal stem cell (BM-MSC) therapy improves the recovery of cardiac function after myocardial infarction (MI); however, the underlying molecular mechanisms are not completely understood. Recent studies have shown that microRNAs (miRNAs) modulate the pathophysiology of cardiovascular diseases. Here, we investigated the mechanisms underlying the effects of BM-MSC-derived paracrine factors and cardiac miRNAs on myocardial regeneration after MI. In our study, MI was induced by permanent ligation of the left anterior descending (LAD) coronary artery. BM-MSCs transplanted in infarcted rats significantly downregulated the expression of miRNA-23a and miRNA-92a and inhibited apoptosis in the myocardium. An in vitro experiment showed that supernatant from BM-MSCs cultured under hypoxia contained higher levels of vascular endothelial growth factor (VEGF) than that from BM-MSCs under normoxia. In addition, inhibition of miRNA-23a and miRNA-92a reduced cardiac apoptosis. Moreover, the VEGF-containing BM-MSC supernatant inhibited miRNA-23a and miRNA-92a expression and reduced apoptotic signaling in cardiomyocytes under hypoxia. These effects were inhibited when the supernatant was treated with neutralizing antibodies against VEGF. Our results indicate that the paracrine factor, VEGF, derived from transplanted BM-MSCs, regulated the expression of miRNAs such as miRNA-23a and miRNA-92a and exerted anti-apoptotic effects in cardiomyocytes after MI.
doi_str_mv 10.1371/journal.pone.0179972
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1914827696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A497380518</galeid><doaj_id>oai_doaj_org_article_81466bdb1f53411aadbab5e28c049019</doaj_id><sourcerecordid>A497380518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-4bf09823436df9e9c3b5cea4442a98fbbc1416a3d839093fd814df364112eff83</originalsourceid><addsrcrecordid>eNqNk81u1DAUhSMEolB4AwSWkBAsZohjJxNvkErFT6WKSuVna93Y1zOunHiwnYE-Hy-G05lWHdQFysKJ_Z1z42PfonhGyzllC_r2wo9hADdf-wHnJV0IsajuFY-oYNWsqUp2_9b7QfE4xouyrFnbNA-LgyoPFa3po-LP-ywnPYTgf5EeIw5qddmDIzFhTxQ6N9MY7AY12UBUo4NAcNA-rdDZjC2zLq2IAZV8IJASDiMkjERB0BYUgbVfJx9tJBsLJOAyWyTrB-LNDdPb8y9Hs4oBgUHvvkQFxA4kSyCR3mt0k6K_9FuRy4sGgpqsnhQPDLiIT3fjYfH944dvx59np2efTo6PTmeqEVWa8c6Uoq0YZ402AoViXa0QOOcViNZ0naKcNsB0y0QpmNEt5dqwhlNaoTEtOyxebH3Xzke5yz9KKihvq0UjmkycbAnt4UKug83BXkoPVl5N-LCUEJJVDmU2b5pOd9TULFcA0B10NVatKrko88kdFu921cauR61wSAHcnun-ymBXcuk3suaCUlpmg9c7g-B_jhiT7G2cThQG9OPVf-fSgnOa0Zf_oHfvbkctIW8g5-9zXTWZyiMuFqwtazqlNL-Dyo_G3qp824zN83uCN3uCzCT8nZYwxihPvp7_P3v2Y599dYtdIbi0it6N05WJ-yDfgir4GAOam5BpKadeu05DTr0md72WZc9vH9CN6Lq52F97PCck</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1914827696</pqid></control><display><type>article</type><title>Bone marrow mesenchymal stem cell-derived vascular endothelial growth factor attenuates cardiac apoptosis via regulation of cardiac miRNA-23a and miRNA-92a in a rat model of myocardial infarction</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Song, Yi-Sun ; Joo, Hyun-Woo ; Park, In-Hwa ; Shen, Guang-Yin ; Lee, Yonggu ; Shin, Jeong Hun ; Kim, Hyuck ; Kim, Kyung-Soo</creator><contributor>Fan, Guo-Chang</contributor><creatorcontrib>Song, Yi-Sun ; Joo, Hyun-Woo ; Park, In-Hwa ; Shen, Guang-Yin ; Lee, Yonggu ; Shin, Jeong Hun ; Kim, Hyuck ; Kim, Kyung-Soo ; Fan, Guo-Chang</creatorcontrib><description>Bone marrow-mesenchymal stem cell (BM-MSC) therapy improves the recovery of cardiac function after myocardial infarction (MI); however, the underlying molecular mechanisms are not completely understood. Recent studies have shown that microRNAs (miRNAs) modulate the pathophysiology of cardiovascular diseases. Here, we investigated the mechanisms underlying the effects of BM-MSC-derived paracrine factors and cardiac miRNAs on myocardial regeneration after MI. In our study, MI was induced by permanent ligation of the left anterior descending (LAD) coronary artery. BM-MSCs transplanted in infarcted rats significantly downregulated the expression of miRNA-23a and miRNA-92a and inhibited apoptosis in the myocardium. An in vitro experiment showed that supernatant from BM-MSCs cultured under hypoxia contained higher levels of vascular endothelial growth factor (VEGF) than that from BM-MSCs under normoxia. In addition, inhibition of miRNA-23a and miRNA-92a reduced cardiac apoptosis. Moreover, the VEGF-containing BM-MSC supernatant inhibited miRNA-23a and miRNA-92a expression and reduced apoptotic signaling in cardiomyocytes under hypoxia. These effects were inhibited when the supernatant was treated with neutralizing antibodies against VEGF. Our results indicate that the paracrine factor, VEGF, derived from transplanted BM-MSCs, regulated the expression of miRNAs such as miRNA-23a and miRNA-92a and exerted anti-apoptotic effects in cardiomyocytes after MI.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0179972</identifier><identifier>PMID: 28662151</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antibodies ; Apoptosis ; Apoptosis - physiology ; Attenuation ; Biology and life sciences ; Bone marrow ; Bone Marrow Cells - cytology ; Bone Marrow Cells - metabolism ; Cardiology ; Cardiomyocytes ; Cardiovascular diseases ; Care and treatment ; Cells, Cultured ; Coronary artery ; Culture Media, Conditioned ; Disease Models, Animal ; Diseases ; Engineering ; Genetic aspects ; Heart ; Heart attack ; Heart attacks ; Heart diseases ; Heart failure ; Hypoxia ; In vitro methods and tests ; Infarction ; Inhibition ; Internal medicine ; Medicine ; Medicine and Health Sciences ; Mesenchymal stem cells ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - metabolism ; Mesenchyme ; MicroRNA ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - physiology ; miRNA ; Molecular modelling ; Myocardial infarction ; Myocardial Infarction - genetics ; Myocardial Infarction - pathology ; Myocardium ; Myocardium - metabolism ; Myocytes, Cardiac - metabolism ; Neutralizing ; Ostomy ; Paracrine signalling ; Penicillin ; Physiological aspects ; Physiology ; Rats ; Regeneration ; Regulation ; Research and Analysis Methods ; Rodents ; Science ; Stem cells ; Therapy ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - physiology</subject><ispartof>PloS one, 2017-06, Vol.12 (6), p.e0179972-e0179972</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Song et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Song et al 2017 Song et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-4bf09823436df9e9c3b5cea4442a98fbbc1416a3d839093fd814df364112eff83</citedby><cites>FETCH-LOGICAL-c692t-4bf09823436df9e9c3b5cea4442a98fbbc1416a3d839093fd814df364112eff83</cites><orcidid>0000-0002-0891-1023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491110/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491110/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28662151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Fan, Guo-Chang</contributor><creatorcontrib>Song, Yi-Sun</creatorcontrib><creatorcontrib>Joo, Hyun-Woo</creatorcontrib><creatorcontrib>Park, In-Hwa</creatorcontrib><creatorcontrib>Shen, Guang-Yin</creatorcontrib><creatorcontrib>Lee, Yonggu</creatorcontrib><creatorcontrib>Shin, Jeong Hun</creatorcontrib><creatorcontrib>Kim, Hyuck</creatorcontrib><creatorcontrib>Kim, Kyung-Soo</creatorcontrib><title>Bone marrow mesenchymal stem cell-derived vascular endothelial growth factor attenuates cardiac apoptosis via regulation of cardiac miRNA-23a and miRNA-92a in a rat model of myocardial infarction</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Bone marrow-mesenchymal stem cell (BM-MSC) therapy improves the recovery of cardiac function after myocardial infarction (MI); however, the underlying molecular mechanisms are not completely understood. Recent studies have shown that microRNAs (miRNAs) modulate the pathophysiology of cardiovascular diseases. Here, we investigated the mechanisms underlying the effects of BM-MSC-derived paracrine factors and cardiac miRNAs on myocardial regeneration after MI. In our study, MI was induced by permanent ligation of the left anterior descending (LAD) coronary artery. BM-MSCs transplanted in infarcted rats significantly downregulated the expression of miRNA-23a and miRNA-92a and inhibited apoptosis in the myocardium. An in vitro experiment showed that supernatant from BM-MSCs cultured under hypoxia contained higher levels of vascular endothelial growth factor (VEGF) than that from BM-MSCs under normoxia. In addition, inhibition of miRNA-23a and miRNA-92a reduced cardiac apoptosis. Moreover, the VEGF-containing BM-MSC supernatant inhibited miRNA-23a and miRNA-92a expression and reduced apoptotic signaling in cardiomyocytes under hypoxia. These effects were inhibited when the supernatant was treated with neutralizing antibodies against VEGF. Our results indicate that the paracrine factor, VEGF, derived from transplanted BM-MSCs, regulated the expression of miRNAs such as miRNA-23a and miRNA-92a and exerted anti-apoptotic effects in cardiomyocytes after MI.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Apoptosis</subject><subject>Apoptosis - physiology</subject><subject>Attenuation</subject><subject>Biology and life sciences</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Cardiology</subject><subject>Cardiomyocytes</subject><subject>Cardiovascular diseases</subject><subject>Care and treatment</subject><subject>Cells, Cultured</subject><subject>Coronary artery</subject><subject>Culture Media, Conditioned</subject><subject>Disease Models, Animal</subject><subject>Diseases</subject><subject>Engineering</subject><subject>Genetic aspects</subject><subject>Heart</subject><subject>Heart attack</subject><subject>Heart attacks</subject><subject>Heart diseases</subject><subject>Heart failure</subject><subject>Hypoxia</subject><subject>In vitro methods and tests</subject><subject>Infarction</subject><subject>Inhibition</subject><subject>Internal medicine</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - metabolism</subject><subject>Mesenchyme</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - physiology</subject><subject>miRNA</subject><subject>Molecular modelling</subject><subject>Myocardial infarction</subject><subject>Myocardial Infarction - genetics</subject><subject>Myocardial Infarction - pathology</subject><subject>Myocardium</subject><subject>Myocardium - metabolism</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Neutralizing</subject><subject>Ostomy</subject><subject>Paracrine signalling</subject><subject>Penicillin</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Rats</subject><subject>Regeneration</subject><subject>Regulation</subject><subject>Research and Analysis Methods</subject><subject>Rodents</subject><subject>Science</subject><subject>Stem cells</subject><subject>Therapy</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - physiology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk81u1DAUhSMEolB4AwSWkBAsZohjJxNvkErFT6WKSuVna93Y1zOunHiwnYE-Hy-G05lWHdQFysKJ_Z1z42PfonhGyzllC_r2wo9hADdf-wHnJV0IsajuFY-oYNWsqUp2_9b7QfE4xouyrFnbNA-LgyoPFa3po-LP-ywnPYTgf5EeIw5qddmDIzFhTxQ6N9MY7AY12UBUo4NAcNA-rdDZjC2zLq2IAZV8IJASDiMkjERB0BYUgbVfJx9tJBsLJOAyWyTrB-LNDdPb8y9Hs4oBgUHvvkQFxA4kSyCR3mt0k6K_9FuRy4sGgpqsnhQPDLiIT3fjYfH944dvx59np2efTo6PTmeqEVWa8c6Uoq0YZ402AoViXa0QOOcViNZ0naKcNsB0y0QpmNEt5dqwhlNaoTEtOyxebH3Xzke5yz9KKihvq0UjmkycbAnt4UKug83BXkoPVl5N-LCUEJJVDmU2b5pOd9TULFcA0B10NVatKrko88kdFu921cauR61wSAHcnun-ymBXcuk3suaCUlpmg9c7g-B_jhiT7G2cThQG9OPVf-fSgnOa0Zf_oHfvbkctIW8g5-9zXTWZyiMuFqwtazqlNL-Dyo_G3qp824zN83uCN3uCzCT8nZYwxihPvp7_P3v2Y599dYtdIbi0it6N05WJ-yDfgir4GAOam5BpKadeu05DTr0md72WZc9vH9CN6Lq52F97PCck</recordid><startdate>20170629</startdate><enddate>20170629</enddate><creator>Song, Yi-Sun</creator><creator>Joo, Hyun-Woo</creator><creator>Park, In-Hwa</creator><creator>Shen, Guang-Yin</creator><creator>Lee, Yonggu</creator><creator>Shin, Jeong Hun</creator><creator>Kim, Hyuck</creator><creator>Kim, Kyung-Soo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0891-1023</orcidid></search><sort><creationdate>20170629</creationdate><title>Bone marrow mesenchymal stem cell-derived vascular endothelial growth factor attenuates cardiac apoptosis via regulation of cardiac miRNA-23a and miRNA-92a in a rat model of myocardial infarction</title><author>Song, Yi-Sun ; Joo, Hyun-Woo ; Park, In-Hwa ; Shen, Guang-Yin ; Lee, Yonggu ; Shin, Jeong Hun ; Kim, Hyuck ; Kim, Kyung-Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-4bf09823436df9e9c3b5cea4442a98fbbc1416a3d839093fd814df364112eff83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Apoptosis</topic><topic>Apoptosis - physiology</topic><topic>Attenuation</topic><topic>Biology and life sciences</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Cardiology</topic><topic>Cardiomyocytes</topic><topic>Cardiovascular diseases</topic><topic>Care and treatment</topic><topic>Cells, Cultured</topic><topic>Coronary artery</topic><topic>Culture Media, Conditioned</topic><topic>Disease Models, Animal</topic><topic>Diseases</topic><topic>Engineering</topic><topic>Genetic aspects</topic><topic>Heart</topic><topic>Heart attack</topic><topic>Heart attacks</topic><topic>Heart diseases</topic><topic>Heart failure</topic><topic>Hypoxia</topic><topic>In vitro methods and tests</topic><topic>Infarction</topic><topic>Inhibition</topic><topic>Internal medicine</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - metabolism</topic><topic>Mesenchyme</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - physiology</topic><topic>miRNA</topic><topic>Molecular modelling</topic><topic>Myocardial infarction</topic><topic>Myocardial Infarction - genetics</topic><topic>Myocardial Infarction - pathology</topic><topic>Myocardium</topic><topic>Myocardium - metabolism</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Neutralizing</topic><topic>Ostomy</topic><topic>Paracrine signalling</topic><topic>Penicillin</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Rats</topic><topic>Regeneration</topic><topic>Regulation</topic><topic>Research and Analysis Methods</topic><topic>Rodents</topic><topic>Science</topic><topic>Stem cells</topic><topic>Therapy</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yi-Sun</creatorcontrib><creatorcontrib>Joo, Hyun-Woo</creatorcontrib><creatorcontrib>Park, In-Hwa</creatorcontrib><creatorcontrib>Shen, Guang-Yin</creatorcontrib><creatorcontrib>Lee, Yonggu</creatorcontrib><creatorcontrib>Shin, Jeong Hun</creatorcontrib><creatorcontrib>Kim, Hyuck</creatorcontrib><creatorcontrib>Kim, Kyung-Soo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yi-Sun</au><au>Joo, Hyun-Woo</au><au>Park, In-Hwa</au><au>Shen, Guang-Yin</au><au>Lee, Yonggu</au><au>Shin, Jeong Hun</au><au>Kim, Hyuck</au><au>Kim, Kyung-Soo</au><au>Fan, Guo-Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bone marrow mesenchymal stem cell-derived vascular endothelial growth factor attenuates cardiac apoptosis via regulation of cardiac miRNA-23a and miRNA-92a in a rat model of myocardial infarction</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-06-29</date><risdate>2017</risdate><volume>12</volume><issue>6</issue><spage>e0179972</spage><epage>e0179972</epage><pages>e0179972-e0179972</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Bone marrow-mesenchymal stem cell (BM-MSC) therapy improves the recovery of cardiac function after myocardial infarction (MI); however, the underlying molecular mechanisms are not completely understood. Recent studies have shown that microRNAs (miRNAs) modulate the pathophysiology of cardiovascular diseases. Here, we investigated the mechanisms underlying the effects of BM-MSC-derived paracrine factors and cardiac miRNAs on myocardial regeneration after MI. In our study, MI was induced by permanent ligation of the left anterior descending (LAD) coronary artery. BM-MSCs transplanted in infarcted rats significantly downregulated the expression of miRNA-23a and miRNA-92a and inhibited apoptosis in the myocardium. An in vitro experiment showed that supernatant from BM-MSCs cultured under hypoxia contained higher levels of vascular endothelial growth factor (VEGF) than that from BM-MSCs under normoxia. In addition, inhibition of miRNA-23a and miRNA-92a reduced cardiac apoptosis. Moreover, the VEGF-containing BM-MSC supernatant inhibited miRNA-23a and miRNA-92a expression and reduced apoptotic signaling in cardiomyocytes under hypoxia. These effects were inhibited when the supernatant was treated with neutralizing antibodies against VEGF. Our results indicate that the paracrine factor, VEGF, derived from transplanted BM-MSCs, regulated the expression of miRNAs such as miRNA-23a and miRNA-92a and exerted anti-apoptotic effects in cardiomyocytes after MI.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28662151</pmid><doi>10.1371/journal.pone.0179972</doi><tpages>e0179972</tpages><orcidid>https://orcid.org/0000-0002-0891-1023</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-06, Vol.12 (6), p.e0179972-e0179972
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1914827696
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Antibodies
Apoptosis
Apoptosis - physiology
Attenuation
Biology and life sciences
Bone marrow
Bone Marrow Cells - cytology
Bone Marrow Cells - metabolism
Cardiology
Cardiomyocytes
Cardiovascular diseases
Care and treatment
Cells, Cultured
Coronary artery
Culture Media, Conditioned
Disease Models, Animal
Diseases
Engineering
Genetic aspects
Heart
Heart attack
Heart attacks
Heart diseases
Heart failure
Hypoxia
In vitro methods and tests
Infarction
Inhibition
Internal medicine
Medicine
Medicine and Health Sciences
Mesenchymal stem cells
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - metabolism
Mesenchyme
MicroRNA
MicroRNAs
MicroRNAs - genetics
MicroRNAs - physiology
miRNA
Molecular modelling
Myocardial infarction
Myocardial Infarction - genetics
Myocardial Infarction - pathology
Myocardium
Myocardium - metabolism
Myocytes, Cardiac - metabolism
Neutralizing
Ostomy
Paracrine signalling
Penicillin
Physiological aspects
Physiology
Rats
Regeneration
Regulation
Research and Analysis Methods
Rodents
Science
Stem cells
Therapy
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - physiology
title Bone marrow mesenchymal stem cell-derived vascular endothelial growth factor attenuates cardiac apoptosis via regulation of cardiac miRNA-23a and miRNA-92a in a rat model of myocardial infarction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bone%20marrow%20mesenchymal%20stem%20cell-derived%20vascular%20endothelial%20growth%20factor%20attenuates%20cardiac%20apoptosis%20via%20regulation%20of%20cardiac%20miRNA-23a%20and%20miRNA-92a%20in%20a%20rat%20model%20of%20myocardial%20infarction&rft.jtitle=PloS%20one&rft.au=Song,%20Yi-Sun&rft.date=2017-06-29&rft.volume=12&rft.issue=6&rft.spage=e0179972&rft.epage=e0179972&rft.pages=e0179972-e0179972&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0179972&rft_dat=%3Cgale_plos_%3EA497380518%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1914827696&rft_id=info:pmid/28662151&rft_galeid=A497380518&rft_doaj_id=oai_doaj_org_article_81466bdb1f53411aadbab5e28c049019&rfr_iscdi=true