Biofilm microenvironment induces a widespread adaptive amino-acid fermentation pathway conferring strong fitness advantage in Escherichia coli

Bacterial metabolism has been studied primarily in liquid cultures, and exploration of other natural growth conditions may reveal new aspects of bacterial biology. Here, we investigate metabolic changes occurring when Escherichia coli grows as surface-attached biofilms, a common but still poorly cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2017-05, Vol.13 (5), p.e1006800-e1006800
Hauptverfasser: Létoffé, Sylvie, Chalabaev, Sabina, Dugay, José, Stressmann, Franziska, Audrain, Bianca, Portais, Jean-Charles, Letisse, Fabien, Ghigo, Jean-Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bacterial metabolism has been studied primarily in liquid cultures, and exploration of other natural growth conditions may reveal new aspects of bacterial biology. Here, we investigate metabolic changes occurring when Escherichia coli grows as surface-attached biofilms, a common but still poorly characterized bacterial lifestyle. We show that E. coli adapts to hypoxic conditions prevailing within biofilms by reducing the amino acid threonine into 1-propanol, an important industrial commodity not known to be naturally produced by Enterobacteriaceae. We demonstrate that threonine degradation corresponds to a fermentation process maintaining cellular redox balance, which confers a strong fitness advantage during anaerobic and biofilm growth but not in aerobic conditions. Whereas our study identifies a fermentation pathway known in Clostridia but previously undocumented in Enterobacteriaceae, it also provides novel insight into how growth in anaerobic biofilm microenvironments can trigger adaptive metabolic pathways edging out competition with in mixed bacterial communities.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1006800