Phenotypic heterogeneity promotes adaptive evolution

Genetically identical cells frequently display substantial heterogeneity in gene expression, cellular morphology and physiology. It has been suggested that by rapidly generating a subpopulation with novel phenotypic traits, phenotypic heterogeneity (or plasticity) accelerates the rate of adaptive ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2017-05, Vol.15 (5), p.e2000644-e2000644
Hauptverfasser: Bódi, Zoltán, Farkas, Zoltán, Nevozhay, Dmitry, Kalapis, Dorottya, Lázár, Viktória, Csörgő, Bálint, Nyerges, Ákos, Szamecz, Béla, Fekete, Gergely, Papp, Balázs, Araújo, Hugo, Oliveira, José L, Moura, Gabriela, Santos, Manuel A S, Székely, Jr, Tamás, Balázsi, Gábor, Pál, Csaba
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2000644
container_issue 5
container_start_page e2000644
container_title PLoS biology
container_volume 15
creator Bódi, Zoltán
Farkas, Zoltán
Nevozhay, Dmitry
Kalapis, Dorottya
Lázár, Viktória
Csörgő, Bálint
Nyerges, Ákos
Szamecz, Béla
Fekete, Gergely
Papp, Balázs
Araújo, Hugo
Oliveira, José L
Moura, Gabriela
Santos, Manuel A S
Székely, Jr, Tamás
Balázsi, Gábor
Pál, Csaba
description Genetically identical cells frequently display substantial heterogeneity in gene expression, cellular morphology and physiology. It has been suggested that by rapidly generating a subpopulation with novel phenotypic traits, phenotypic heterogeneity (or plasticity) accelerates the rate of adaptive evolution in populations facing extreme environmental challenges. This issue is important as cell-to-cell phenotypic heterogeneity may initiate key steps in microbial evolution of drug resistance and cancer progression. Here, we study how stochastic transitions between cellular states influence evolutionary adaptation to a stressful environment in yeast Saccharomyces cerevisiae. We developed inducible synthetic gene circuits that generate varying degrees of expression stochasticity of an antifungal resistance gene. We initiated laboratory evolutionary experiments with genotypes carrying different versions of the genetic circuit by exposing the corresponding populations to gradually increasing antifungal stress. Phenotypic heterogeneity altered the evolutionary dynamics by transforming the adaptive landscape that relates genotype to fitness. Specifically, it enhanced the adaptive value of beneficial mutations through synergism between cell-to-cell variability and genetic variation. Our work demonstrates that phenotypic heterogeneity is an evolving trait when populations face a chronic selection pressure. It shapes evolutionary trajectories at the genomic level and facilitates evolutionary rescue from a deteriorating environmental stress.
doi_str_mv 10.1371/journal.pbio.2000644
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1910460000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A493731919</galeid><doaj_id>oai_doaj_org_article_8aa0f60a3d4b4da2b53a6c14ac85d68f</doaj_id><sourcerecordid>A493731919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c721t-1fbecebe3959fb33ae09dcb8fac99fe4ca3e8ba0b714d3d80611734bf01d0d9f3</originalsourceid><addsrcrecordid>eNqVkk1vEzEQhlcIREvhHyCIxAUOCfbau2tfkKqKj0gVRXxdLX-ME0eb9db2RuTf45Bt1UU9gHywNX7mHc_4LYrnGC0wafDbjR9CJ9tFr5xflAihmtIHxSmuaDVvGKse3jmfFE9i3CBUlrxkj4uTklFWU16fFvTLGjqf9r3TszUkCH4FHbi0n_XBb32COJNG9sntYAY73w7J-e5p8cjKNsKzcT8rfnx4__3i0_zy6uPy4vxyrpsSpzm2CjQoILziVhEiAXGjFbNSc26BakmAKYlUg6khhqEa44ZQZRE2yHBLzoqXR92-9VGMDUeBOUa0zh2jTCyPhPFyI_rgtjLshZdO_An4sBIyJKdbEExKZGskiaGKGlmqishaYyo1q0zNDtXejdUGtQWjoUtBthPR6U3n1mLld6KiJakqkgVejwLBXw8Qk9i6qKFtZQd-yO9mnDeclJxm9NVf6P3djdRK5gZcZ32uqw-i4pxy0pDM8kwt7qHyMrB12ndgXY5PEt5MEjKT4FdaySFGsfz29T_Yz__OXv2csvTI6uBjDGBv54yROPj7ZiDi4G8x-junvbj7R7dJN4YmvwE5QPaT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910460000</pqid></control><display><type>article</type><title>Phenotypic heterogeneity promotes adaptive evolution</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Bódi, Zoltán ; Farkas, Zoltán ; Nevozhay, Dmitry ; Kalapis, Dorottya ; Lázár, Viktória ; Csörgő, Bálint ; Nyerges, Ákos ; Szamecz, Béla ; Fekete, Gergely ; Papp, Balázs ; Araújo, Hugo ; Oliveira, José L ; Moura, Gabriela ; Santos, Manuel A S ; Székely, Jr, Tamás ; Balázsi, Gábor ; Pál, Csaba</creator><contributor>Siegal, Mark</contributor><creatorcontrib>Bódi, Zoltán ; Farkas, Zoltán ; Nevozhay, Dmitry ; Kalapis, Dorottya ; Lázár, Viktória ; Csörgő, Bálint ; Nyerges, Ákos ; Szamecz, Béla ; Fekete, Gergely ; Papp, Balázs ; Araújo, Hugo ; Oliveira, José L ; Moura, Gabriela ; Santos, Manuel A S ; Székely, Jr, Tamás ; Balázsi, Gábor ; Pál, Csaba ; Siegal, Mark</creatorcontrib><description>Genetically identical cells frequently display substantial heterogeneity in gene expression, cellular morphology and physiology. It has been suggested that by rapidly generating a subpopulation with novel phenotypic traits, phenotypic heterogeneity (or plasticity) accelerates the rate of adaptive evolution in populations facing extreme environmental challenges. This issue is important as cell-to-cell phenotypic heterogeneity may initiate key steps in microbial evolution of drug resistance and cancer progression. Here, we study how stochastic transitions between cellular states influence evolutionary adaptation to a stressful environment in yeast Saccharomyces cerevisiae. We developed inducible synthetic gene circuits that generate varying degrees of expression stochasticity of an antifungal resistance gene. We initiated laboratory evolutionary experiments with genotypes carrying different versions of the genetic circuit by exposing the corresponding populations to gradually increasing antifungal stress. Phenotypic heterogeneity altered the evolutionary dynamics by transforming the adaptive landscape that relates genotype to fitness. Specifically, it enhanced the adaptive value of beneficial mutations through synergism between cell-to-cell variability and genetic variation. Our work demonstrates that phenotypic heterogeneity is an evolving trait when populations face a chronic selection pressure. It shapes evolutionary trajectories at the genomic level and facilitates evolutionary rescue from a deteriorating environmental stress.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.2000644</identifier><identifier>PMID: 28486496</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Adaptation, Biological ; Antimicrobial agents ; Baking yeast ; Biological Evolution ; Biology and Life Sciences ; Cancer ; Circuits ; Drug resistance ; Drug Resistance, Fungal - genetics ; Ecological adaptation ; Environmental stress ; Evolution ; Evolution &amp; development ; Evolutionary biology ; Fitness ; Fungicides ; Gene expression ; Genes, Fungal ; Genetic research ; Genomes ; Genotype &amp; phenotype ; Genotypes ; Heterogeneity ; Medicine and Health Sciences ; Microorganisms ; Mutation ; Phenotype ; Phenotypic plasticity ; Physiology ; Plastic properties ; Plasticity ; Populations ; Probability theory ; Randomness ; Reproductive fitness ; Saccharomyces cerevisiae ; Stochasticity ; Stresses ; Synergism ; Trajectories ; Variability ; Yeast</subject><ispartof>PLoS biology, 2017-05, Vol.15 (5), p.e2000644-e2000644</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bódi Z, Farkas Z, Nevozhay D, Kalapis D, Lázár V, Csörg? B, et al. (2017) Phenotypic heterogeneity promotes adaptive evolution. PLoS Biol 15(5): e2000644. https://doi.org/10.1371/journal.pbio.2000644</rights><rights>2017 Bódi et al 2017 Bódi et al</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bódi Z, Farkas Z, Nevozhay D, Kalapis D, Lázár V, Csörg? B, et al. (2017) Phenotypic heterogeneity promotes adaptive evolution. PLoS Biol 15(5): e2000644. https://doi.org/10.1371/journal.pbio.2000644</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c721t-1fbecebe3959fb33ae09dcb8fac99fe4ca3e8ba0b714d3d80611734bf01d0d9f3</citedby><cites>FETCH-LOGICAL-c721t-1fbecebe3959fb33ae09dcb8fac99fe4ca3e8ba0b714d3d80611734bf01d0d9f3</cites><orcidid>0000-0002-5187-9903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423553/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423553/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28486496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Siegal, Mark</contributor><creatorcontrib>Bódi, Zoltán</creatorcontrib><creatorcontrib>Farkas, Zoltán</creatorcontrib><creatorcontrib>Nevozhay, Dmitry</creatorcontrib><creatorcontrib>Kalapis, Dorottya</creatorcontrib><creatorcontrib>Lázár, Viktória</creatorcontrib><creatorcontrib>Csörgő, Bálint</creatorcontrib><creatorcontrib>Nyerges, Ákos</creatorcontrib><creatorcontrib>Szamecz, Béla</creatorcontrib><creatorcontrib>Fekete, Gergely</creatorcontrib><creatorcontrib>Papp, Balázs</creatorcontrib><creatorcontrib>Araújo, Hugo</creatorcontrib><creatorcontrib>Oliveira, José L</creatorcontrib><creatorcontrib>Moura, Gabriela</creatorcontrib><creatorcontrib>Santos, Manuel A S</creatorcontrib><creatorcontrib>Székely, Jr, Tamás</creatorcontrib><creatorcontrib>Balázsi, Gábor</creatorcontrib><creatorcontrib>Pál, Csaba</creatorcontrib><title>Phenotypic heterogeneity promotes adaptive evolution</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Genetically identical cells frequently display substantial heterogeneity in gene expression, cellular morphology and physiology. It has been suggested that by rapidly generating a subpopulation with novel phenotypic traits, phenotypic heterogeneity (or plasticity) accelerates the rate of adaptive evolution in populations facing extreme environmental challenges. This issue is important as cell-to-cell phenotypic heterogeneity may initiate key steps in microbial evolution of drug resistance and cancer progression. Here, we study how stochastic transitions between cellular states influence evolutionary adaptation to a stressful environment in yeast Saccharomyces cerevisiae. We developed inducible synthetic gene circuits that generate varying degrees of expression stochasticity of an antifungal resistance gene. We initiated laboratory evolutionary experiments with genotypes carrying different versions of the genetic circuit by exposing the corresponding populations to gradually increasing antifungal stress. Phenotypic heterogeneity altered the evolutionary dynamics by transforming the adaptive landscape that relates genotype to fitness. Specifically, it enhanced the adaptive value of beneficial mutations through synergism between cell-to-cell variability and genetic variation. Our work demonstrates that phenotypic heterogeneity is an evolving trait when populations face a chronic selection pressure. It shapes evolutionary trajectories at the genomic level and facilitates evolutionary rescue from a deteriorating environmental stress.</description><subject>Adaptation</subject><subject>Adaptation, Biological</subject><subject>Antimicrobial agents</subject><subject>Baking yeast</subject><subject>Biological Evolution</subject><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>Circuits</subject><subject>Drug resistance</subject><subject>Drug Resistance, Fungal - genetics</subject><subject>Ecological adaptation</subject><subject>Environmental stress</subject><subject>Evolution</subject><subject>Evolution &amp; development</subject><subject>Evolutionary biology</subject><subject>Fitness</subject><subject>Fungicides</subject><subject>Gene expression</subject><subject>Genes, Fungal</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Genotypes</subject><subject>Heterogeneity</subject><subject>Medicine and Health Sciences</subject><subject>Microorganisms</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Phenotypic plasticity</subject><subject>Physiology</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Populations</subject><subject>Probability theory</subject><subject>Randomness</subject><subject>Reproductive fitness</subject><subject>Saccharomyces cerevisiae</subject><subject>Stochasticity</subject><subject>Stresses</subject><subject>Synergism</subject><subject>Trajectories</subject><subject>Variability</subject><subject>Yeast</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1vEzEQhlcIREvhHyCIxAUOCfbau2tfkKqKj0gVRXxdLX-ME0eb9db2RuTf45Bt1UU9gHywNX7mHc_4LYrnGC0wafDbjR9CJ9tFr5xflAihmtIHxSmuaDVvGKse3jmfFE9i3CBUlrxkj4uTklFWU16fFvTLGjqf9r3TszUkCH4FHbi0n_XBb32COJNG9sntYAY73w7J-e5p8cjKNsKzcT8rfnx4__3i0_zy6uPy4vxyrpsSpzm2CjQoILziVhEiAXGjFbNSc26BakmAKYlUg6khhqEa44ZQZRE2yHBLzoqXR92-9VGMDUeBOUa0zh2jTCyPhPFyI_rgtjLshZdO_An4sBIyJKdbEExKZGskiaGKGlmqishaYyo1q0zNDtXejdUGtQWjoUtBthPR6U3n1mLld6KiJakqkgVejwLBXw8Qk9i6qKFtZQd-yO9mnDeclJxm9NVf6P3djdRK5gZcZ32uqw-i4pxy0pDM8kwt7qHyMrB12ndgXY5PEt5MEjKT4FdaySFGsfz29T_Yz__OXv2csvTI6uBjDGBv54yROPj7ZiDi4G8x-junvbj7R7dJN4YmvwE5QPaT</recordid><startdate>20170509</startdate><enddate>20170509</enddate><creator>Bódi, Zoltán</creator><creator>Farkas, Zoltán</creator><creator>Nevozhay, Dmitry</creator><creator>Kalapis, Dorottya</creator><creator>Lázár, Viktória</creator><creator>Csörgő, Bálint</creator><creator>Nyerges, Ákos</creator><creator>Szamecz, Béla</creator><creator>Fekete, Gergely</creator><creator>Papp, Balázs</creator><creator>Araújo, Hugo</creator><creator>Oliveira, José L</creator><creator>Moura, Gabriela</creator><creator>Santos, Manuel A S</creator><creator>Székely, Jr, Tamás</creator><creator>Balázsi, Gábor</creator><creator>Pál, Csaba</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-5187-9903</orcidid></search><sort><creationdate>20170509</creationdate><title>Phenotypic heterogeneity promotes adaptive evolution</title><author>Bódi, Zoltán ; Farkas, Zoltán ; Nevozhay, Dmitry ; Kalapis, Dorottya ; Lázár, Viktória ; Csörgő, Bálint ; Nyerges, Ákos ; Szamecz, Béla ; Fekete, Gergely ; Papp, Balázs ; Araújo, Hugo ; Oliveira, José L ; Moura, Gabriela ; Santos, Manuel A S ; Székely, Jr, Tamás ; Balázsi, Gábor ; Pál, Csaba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c721t-1fbecebe3959fb33ae09dcb8fac99fe4ca3e8ba0b714d3d80611734bf01d0d9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation</topic><topic>Adaptation, Biological</topic><topic>Antimicrobial agents</topic><topic>Baking yeast</topic><topic>Biological Evolution</topic><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>Circuits</topic><topic>Drug resistance</topic><topic>Drug Resistance, Fungal - genetics</topic><topic>Ecological adaptation</topic><topic>Environmental stress</topic><topic>Evolution</topic><topic>Evolution &amp; development</topic><topic>Evolutionary biology</topic><topic>Fitness</topic><topic>Fungicides</topic><topic>Gene expression</topic><topic>Genes, Fungal</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Genotypes</topic><topic>Heterogeneity</topic><topic>Medicine and Health Sciences</topic><topic>Microorganisms</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Phenotypic plasticity</topic><topic>Physiology</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Populations</topic><topic>Probability theory</topic><topic>Randomness</topic><topic>Reproductive fitness</topic><topic>Saccharomyces cerevisiae</topic><topic>Stochasticity</topic><topic>Stresses</topic><topic>Synergism</topic><topic>Trajectories</topic><topic>Variability</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bódi, Zoltán</creatorcontrib><creatorcontrib>Farkas, Zoltán</creatorcontrib><creatorcontrib>Nevozhay, Dmitry</creatorcontrib><creatorcontrib>Kalapis, Dorottya</creatorcontrib><creatorcontrib>Lázár, Viktória</creatorcontrib><creatorcontrib>Csörgő, Bálint</creatorcontrib><creatorcontrib>Nyerges, Ákos</creatorcontrib><creatorcontrib>Szamecz, Béla</creatorcontrib><creatorcontrib>Fekete, Gergely</creatorcontrib><creatorcontrib>Papp, Balázs</creatorcontrib><creatorcontrib>Araújo, Hugo</creatorcontrib><creatorcontrib>Oliveira, José L</creatorcontrib><creatorcontrib>Moura, Gabriela</creatorcontrib><creatorcontrib>Santos, Manuel A S</creatorcontrib><creatorcontrib>Székely, Jr, Tamás</creatorcontrib><creatorcontrib>Balázsi, Gábor</creatorcontrib><creatorcontrib>Pál, Csaba</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bódi, Zoltán</au><au>Farkas, Zoltán</au><au>Nevozhay, Dmitry</au><au>Kalapis, Dorottya</au><au>Lázár, Viktória</au><au>Csörgő, Bálint</au><au>Nyerges, Ákos</au><au>Szamecz, Béla</au><au>Fekete, Gergely</au><au>Papp, Balázs</au><au>Araújo, Hugo</au><au>Oliveira, José L</au><au>Moura, Gabriela</au><au>Santos, Manuel A S</au><au>Székely, Jr, Tamás</au><au>Balázsi, Gábor</au><au>Pál, Csaba</au><au>Siegal, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phenotypic heterogeneity promotes adaptive evolution</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2017-05-09</date><risdate>2017</risdate><volume>15</volume><issue>5</issue><spage>e2000644</spage><epage>e2000644</epage><pages>e2000644-e2000644</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Genetically identical cells frequently display substantial heterogeneity in gene expression, cellular morphology and physiology. It has been suggested that by rapidly generating a subpopulation with novel phenotypic traits, phenotypic heterogeneity (or plasticity) accelerates the rate of adaptive evolution in populations facing extreme environmental challenges. This issue is important as cell-to-cell phenotypic heterogeneity may initiate key steps in microbial evolution of drug resistance and cancer progression. Here, we study how stochastic transitions between cellular states influence evolutionary adaptation to a stressful environment in yeast Saccharomyces cerevisiae. We developed inducible synthetic gene circuits that generate varying degrees of expression stochasticity of an antifungal resistance gene. We initiated laboratory evolutionary experiments with genotypes carrying different versions of the genetic circuit by exposing the corresponding populations to gradually increasing antifungal stress. Phenotypic heterogeneity altered the evolutionary dynamics by transforming the adaptive landscape that relates genotype to fitness. Specifically, it enhanced the adaptive value of beneficial mutations through synergism between cell-to-cell variability and genetic variation. Our work demonstrates that phenotypic heterogeneity is an evolving trait when populations face a chronic selection pressure. It shapes evolutionary trajectories at the genomic level and facilitates evolutionary rescue from a deteriorating environmental stress.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28486496</pmid><doi>10.1371/journal.pbio.2000644</doi><orcidid>https://orcid.org/0000-0002-5187-9903</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2017-05, Vol.15 (5), p.e2000644-e2000644
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_1910460000
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Adaptation
Adaptation, Biological
Antimicrobial agents
Baking yeast
Biological Evolution
Biology and Life Sciences
Cancer
Circuits
Drug resistance
Drug Resistance, Fungal - genetics
Ecological adaptation
Environmental stress
Evolution
Evolution & development
Evolutionary biology
Fitness
Fungicides
Gene expression
Genes, Fungal
Genetic research
Genomes
Genotype & phenotype
Genotypes
Heterogeneity
Medicine and Health Sciences
Microorganisms
Mutation
Phenotype
Phenotypic plasticity
Physiology
Plastic properties
Plasticity
Populations
Probability theory
Randomness
Reproductive fitness
Saccharomyces cerevisiae
Stochasticity
Stresses
Synergism
Trajectories
Variability
Yeast
title Phenotypic heterogeneity promotes adaptive evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phenotypic%20heterogeneity%20promotes%20adaptive%20evolution&rft.jtitle=PLoS%20biology&rft.au=B%C3%B3di,%20Zolt%C3%A1n&rft.date=2017-05-09&rft.volume=15&rft.issue=5&rft.spage=e2000644&rft.epage=e2000644&rft.pages=e2000644-e2000644&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.2000644&rft_dat=%3Cgale_plos_%3EA493731919%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910460000&rft_id=info:pmid/28486496&rft_galeid=A493731919&rft_doaj_id=oai_doaj_org_article_8aa0f60a3d4b4da2b53a6c14ac85d68f&rfr_iscdi=true