Gridding discretization-based multiple stability switching delay search algorithm: The movement of a human being on a controlled swaying bow
Delay represents a significant phenomenon in the dynamics of many human-related systems-including biological ones. It has i.a. a decisive impact on system stability, and the study of this influence is often mathematically demanding. This paper presents a computationally simple numerical gridding alg...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-06, Vol.12 (6), p.e0178950-e0178950 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0178950 |
---|---|
container_issue | 6 |
container_start_page | e0178950 |
container_title | PloS one |
container_volume | 12 |
creator | Pekař, Libor Matušů, Radek Prokop, Roman |
description | Delay represents a significant phenomenon in the dynamics of many human-related systems-including biological ones. It has i.a. a decisive impact on system stability, and the study of this influence is often mathematically demanding. This paper presents a computationally simple numerical gridding algorithm for the determination of stability margin delay values in multiple-delay linear systems. The characteristic quasi-polynomial-the roots of which decide about stability-is subjected to iterative discretization by means of pre-warped bilinear transformation. Then, a linear and a quadratic interpolation are applied to obtain the associated characteristic polynomial with integer powers. The roots of the associated characteristic polynomial are closely related to the estimation of roots of the original characteristic quasi-polynomial which agrees with the system's eigenvalues. Since the stability border is crossed by the leading one, the switching root locus is enhanced using the Regula Falsi interpolation method. Our methodology is implemented on-and verified by-a numerical bio-cybernetic example of the stabilization of a human-being's movement on a controlled swaying bow. The advantage of the proposed novel algorithm lies in the possibility of the rapid computation of polynomial zeros by means of standard programs for technical computing; in the low level of mathematical knowledge required; and, in the sufficiently high precision of the roots loci estimation. The relationship to the direct search QuasiPolynomial (mapping) Rootfinder algorithm and computational complexity are discussed as well. This algorithm is also applicable for systems with non-commensurate delays. |
doi_str_mv | 10.1371/journal.pone.0178950 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1907556051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A494843999</galeid><doaj_id>oai_doaj_org_article_6959540f365c4bed8afd25f8e3662ab4</doaj_id><sourcerecordid>A494843999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-988117e926d90357cc6517fba2897596656212ea829d6d04360da69ebb1417d43</originalsourceid><addsrcrecordid>eNqNk8Fu1DAQhiMEoqXwBggiISE47GInsRNzQKoqKJUqVYLC1ZrEk40rJ97aTkt5Bh4aZzetuqgHlEPiyff_k5nJJMlLSpY0L-mHCzu6AcxybQdcElpWgpFHyT4VebbgGckf33veS555f0EIyyvOnyZ7WcVEIUixn_w5dlopPaxSpX3jMOjfELQdFjV4VGk_mqDXBlMfoNZGh5vUX-vQdBsFGohnBNd0KZiVdTp0_cf0vMO0t1fY4xBS26aQdmMPQ1rjpLJDDDR2CM4aE1P4a7iZ4rW9fp48acF4fDHfD5IfXz6fH31dnJ4dnxwdni4aLrKwEFVFaYki40qQnJVNwxkt2xqySpRMcM54RjOEKhOKK1LknCjgAuuaFrRURX6QvN76ro31cm6kl1SQkjFOGI3EyZZQFi7k2uke3I20oOUmYN1Kggu6MSi5YIIVpM05a4oaVQWtylhbYc55BvWU7dOcbax7VE3sigOzY7r7ZtCdXNkryQpecDYZvJsNnL0c0QfZx1mhMTCgHTffXcUiacUj-uYf9OHqZmoFsQA9tDbmbSZTeViIIpoJISK1fICKl8JexwFiq2N8R_B-RzANGX-FFYzey5Pv3_6fPfu5y769x3YIJnTemnH6T_0uWGzBxlnvHbZ3TaZETktz2w05LY2clybKXt0f0J3odkvyv5mNE0g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1907556051</pqid></control><display><type>article</type><title>Gridding discretization-based multiple stability switching delay search algorithm: The movement of a human being on a controlled swaying bow</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Pekař, Libor ; Matušů, Radek ; Prokop, Roman</creator><contributor>Shang, Yilun</contributor><creatorcontrib>Pekař, Libor ; Matušů, Radek ; Prokop, Roman ; Shang, Yilun</creatorcontrib><description>Delay represents a significant phenomenon in the dynamics of many human-related systems-including biological ones. It has i.a. a decisive impact on system stability, and the study of this influence is often mathematically demanding. This paper presents a computationally simple numerical gridding algorithm for the determination of stability margin delay values in multiple-delay linear systems. The characteristic quasi-polynomial-the roots of which decide about stability-is subjected to iterative discretization by means of pre-warped bilinear transformation. Then, a linear and a quadratic interpolation are applied to obtain the associated characteristic polynomial with integer powers. The roots of the associated characteristic polynomial are closely related to the estimation of roots of the original characteristic quasi-polynomial which agrees with the system's eigenvalues. Since the stability border is crossed by the leading one, the switching root locus is enhanced using the Regula Falsi interpolation method. Our methodology is implemented on-and verified by-a numerical bio-cybernetic example of the stabilization of a human-being's movement on a controlled swaying bow. The advantage of the proposed novel algorithm lies in the possibility of the rapid computation of polynomial zeros by means of standard programs for technical computing; in the low level of mathematical knowledge required; and, in the sufficiently high precision of the roots loci estimation. The relationship to the direct search QuasiPolynomial (mapping) Rootfinder algorithm and computational complexity are discussed as well. This algorithm is also applicable for systems with non-commensurate delays.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0178950</identifier><identifier>PMID: 28594904</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Biology and Life Sciences ; Complexity ; Computer and Information Sciences ; Computer applications ; Cybernetics ; Delay ; Discretization ; Dynamical systems ; Eigenvalues ; Engineering and Technology ; Human motion ; Humans ; Informatics ; Interpolation ; Iterative methods ; Linear systems ; Loci ; Low level ; Mapping ; Mathematical analysis ; Methods ; Movement - physiology ; Physical Sciences ; Polynomials ; Research and Analysis Methods ; Root locus ; Searching ; Stability ; Stabilization ; Studies ; Switching ; Transformation ; Values</subject><ispartof>PloS one, 2017-06, Vol.12 (6), p.e0178950-e0178950</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Pekař et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Pekař et al 2017 Pekař et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-988117e926d90357cc6517fba2897596656212ea829d6d04360da69ebb1417d43</citedby><cites>FETCH-LOGICAL-c692t-988117e926d90357cc6517fba2897596656212ea829d6d04360da69ebb1417d43</cites><orcidid>0000-0002-2401-5886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5464654/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5464654/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28594904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Shang, Yilun</contributor><creatorcontrib>Pekař, Libor</creatorcontrib><creatorcontrib>Matušů, Radek</creatorcontrib><creatorcontrib>Prokop, Roman</creatorcontrib><title>Gridding discretization-based multiple stability switching delay search algorithm: The movement of a human being on a controlled swaying bow</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Delay represents a significant phenomenon in the dynamics of many human-related systems-including biological ones. It has i.a. a decisive impact on system stability, and the study of this influence is often mathematically demanding. This paper presents a computationally simple numerical gridding algorithm for the determination of stability margin delay values in multiple-delay linear systems. The characteristic quasi-polynomial-the roots of which decide about stability-is subjected to iterative discretization by means of pre-warped bilinear transformation. Then, a linear and a quadratic interpolation are applied to obtain the associated characteristic polynomial with integer powers. The roots of the associated characteristic polynomial are closely related to the estimation of roots of the original characteristic quasi-polynomial which agrees with the system's eigenvalues. Since the stability border is crossed by the leading one, the switching root locus is enhanced using the Regula Falsi interpolation method. Our methodology is implemented on-and verified by-a numerical bio-cybernetic example of the stabilization of a human-being's movement on a controlled swaying bow. The advantage of the proposed novel algorithm lies in the possibility of the rapid computation of polynomial zeros by means of standard programs for technical computing; in the low level of mathematical knowledge required; and, in the sufficiently high precision of the roots loci estimation. The relationship to the direct search QuasiPolynomial (mapping) Rootfinder algorithm and computational complexity are discussed as well. This algorithm is also applicable for systems with non-commensurate delays.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Complexity</subject><subject>Computer and Information Sciences</subject><subject>Computer applications</subject><subject>Cybernetics</subject><subject>Delay</subject><subject>Discretization</subject><subject>Dynamical systems</subject><subject>Eigenvalues</subject><subject>Engineering and Technology</subject><subject>Human motion</subject><subject>Humans</subject><subject>Informatics</subject><subject>Interpolation</subject><subject>Iterative methods</subject><subject>Linear systems</subject><subject>Loci</subject><subject>Low level</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Movement - physiology</subject><subject>Physical Sciences</subject><subject>Polynomials</subject><subject>Research and Analysis Methods</subject><subject>Root locus</subject><subject>Searching</subject><subject>Stability</subject><subject>Stabilization</subject><subject>Studies</subject><subject>Switching</subject><subject>Transformation</subject><subject>Values</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk8Fu1DAQhiMEoqXwBggiISE47GInsRNzQKoqKJUqVYLC1ZrEk40rJ97aTkt5Bh4aZzetuqgHlEPiyff_k5nJJMlLSpY0L-mHCzu6AcxybQdcElpWgpFHyT4VebbgGckf33veS555f0EIyyvOnyZ7WcVEIUixn_w5dlopPaxSpX3jMOjfELQdFjV4VGk_mqDXBlMfoNZGh5vUX-vQdBsFGohnBNd0KZiVdTp0_cf0vMO0t1fY4xBS26aQdmMPQ1rjpLJDDDR2CM4aE1P4a7iZ4rW9fp48acF4fDHfD5IfXz6fH31dnJ4dnxwdni4aLrKwEFVFaYki40qQnJVNwxkt2xqySpRMcM54RjOEKhOKK1LknCjgAuuaFrRURX6QvN76ro31cm6kl1SQkjFOGI3EyZZQFi7k2uke3I20oOUmYN1Kggu6MSi5YIIVpM05a4oaVQWtylhbYc55BvWU7dOcbax7VE3sigOzY7r7ZtCdXNkryQpecDYZvJsNnL0c0QfZx1mhMTCgHTffXcUiacUj-uYf9OHqZmoFsQA9tDbmbSZTeViIIpoJISK1fICKl8JexwFiq2N8R_B-RzANGX-FFYzey5Pv3_6fPfu5y769x3YIJnTemnH6T_0uWGzBxlnvHbZ3TaZETktz2w05LY2clybKXt0f0J3odkvyv5mNE0g</recordid><startdate>20170608</startdate><enddate>20170608</enddate><creator>Pekař, Libor</creator><creator>Matušů, Radek</creator><creator>Prokop, Roman</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2401-5886</orcidid></search><sort><creationdate>20170608</creationdate><title>Gridding discretization-based multiple stability switching delay search algorithm: The movement of a human being on a controlled swaying bow</title><author>Pekař, Libor ; Matušů, Radek ; Prokop, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-988117e926d90357cc6517fba2897596656212ea829d6d04360da69ebb1417d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Complexity</topic><topic>Computer and Information Sciences</topic><topic>Computer applications</topic><topic>Cybernetics</topic><topic>Delay</topic><topic>Discretization</topic><topic>Dynamical systems</topic><topic>Eigenvalues</topic><topic>Engineering and Technology</topic><topic>Human motion</topic><topic>Humans</topic><topic>Informatics</topic><topic>Interpolation</topic><topic>Iterative methods</topic><topic>Linear systems</topic><topic>Loci</topic><topic>Low level</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Movement - physiology</topic><topic>Physical Sciences</topic><topic>Polynomials</topic><topic>Research and Analysis Methods</topic><topic>Root locus</topic><topic>Searching</topic><topic>Stability</topic><topic>Stabilization</topic><topic>Studies</topic><topic>Switching</topic><topic>Transformation</topic><topic>Values</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pekař, Libor</creatorcontrib><creatorcontrib>Matušů, Radek</creatorcontrib><creatorcontrib>Prokop, Roman</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pekař, Libor</au><au>Matušů, Radek</au><au>Prokop, Roman</au><au>Shang, Yilun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gridding discretization-based multiple stability switching delay search algorithm: The movement of a human being on a controlled swaying bow</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-06-08</date><risdate>2017</risdate><volume>12</volume><issue>6</issue><spage>e0178950</spage><epage>e0178950</epage><pages>e0178950-e0178950</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Delay represents a significant phenomenon in the dynamics of many human-related systems-including biological ones. It has i.a. a decisive impact on system stability, and the study of this influence is often mathematically demanding. This paper presents a computationally simple numerical gridding algorithm for the determination of stability margin delay values in multiple-delay linear systems. The characteristic quasi-polynomial-the roots of which decide about stability-is subjected to iterative discretization by means of pre-warped bilinear transformation. Then, a linear and a quadratic interpolation are applied to obtain the associated characteristic polynomial with integer powers. The roots of the associated characteristic polynomial are closely related to the estimation of roots of the original characteristic quasi-polynomial which agrees with the system's eigenvalues. Since the stability border is crossed by the leading one, the switching root locus is enhanced using the Regula Falsi interpolation method. Our methodology is implemented on-and verified by-a numerical bio-cybernetic example of the stabilization of a human-being's movement on a controlled swaying bow. The advantage of the proposed novel algorithm lies in the possibility of the rapid computation of polynomial zeros by means of standard programs for technical computing; in the low level of mathematical knowledge required; and, in the sufficiently high precision of the roots loci estimation. The relationship to the direct search QuasiPolynomial (mapping) Rootfinder algorithm and computational complexity are discussed as well. This algorithm is also applicable for systems with non-commensurate delays.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28594904</pmid><doi>10.1371/journal.pone.0178950</doi><tpages>e0178950</tpages><orcidid>https://orcid.org/0000-0002-2401-5886</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-06, Vol.12 (6), p.e0178950-e0178950 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1907556051 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Analysis Biology and Life Sciences Complexity Computer and Information Sciences Computer applications Cybernetics Delay Discretization Dynamical systems Eigenvalues Engineering and Technology Human motion Humans Informatics Interpolation Iterative methods Linear systems Loci Low level Mapping Mathematical analysis Methods Movement - physiology Physical Sciences Polynomials Research and Analysis Methods Root locus Searching Stability Stabilization Studies Switching Transformation Values |
title | Gridding discretization-based multiple stability switching delay search algorithm: The movement of a human being on a controlled swaying bow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gridding%20discretization-based%20multiple%20stability%20switching%20delay%20search%20algorithm:%20The%20movement%20of%20a%20human%20being%20on%20a%20controlled%20swaying%20bow&rft.jtitle=PloS%20one&rft.au=Peka%C5%99,%20Libor&rft.date=2017-06-08&rft.volume=12&rft.issue=6&rft.spage=e0178950&rft.epage=e0178950&rft.pages=e0178950-e0178950&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0178950&rft_dat=%3Cgale_plos_%3EA494843999%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1907556051&rft_id=info:pmid/28594904&rft_galeid=A494843999&rft_doaj_id=oai_doaj_org_article_6959540f365c4bed8afd25f8e3662ab4&rfr_iscdi=true |