Thermal stability and kinetic constants for 129 variants of a family 1 glycoside hydrolase reveal that enzyme activity and stability can be separately designed

Accurate modeling of enzyme activity and stability is an important goal of the protein engineering community. However, studies seeking to evaluate current progress are limited by small data sets of quantitative kinetic constants and thermal stability measurements. Here, we report quantitative measur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-05, Vol.12 (5), p.e0176255-e0176255
Hauptverfasser: Carlin, Dylan Alexander, Hapig-Ward, Siena, Chan, Bill Wayne, Damrau, Natalie, Riley, Mary, Caster, Ryan W, Bethards, Bowen, Siegel, Justin B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0176255
container_issue 5
container_start_page e0176255
container_title PloS one
container_volume 12
creator Carlin, Dylan Alexander
Hapig-Ward, Siena
Chan, Bill Wayne
Damrau, Natalie
Riley, Mary
Caster, Ryan W
Bethards, Bowen
Siegel, Justin B
description Accurate modeling of enzyme activity and stability is an important goal of the protein engineering community. However, studies seeking to evaluate current progress are limited by small data sets of quantitative kinetic constants and thermal stability measurements. Here, we report quantitative measurements of soluble protein expression in E. coli, thermal stability, and Michaelis-Menten constants (kcat, KM, and kcat/KM) for 129 designed mutants of a glycoside hydrolase. Statistical analyses reveal that functional Tm is independent of kcat, KM, and kcat/KM in this system, illustrating that an individual mutation can modulate these functional parameters independently. In addition, this data set is used to evaluate computational predictions of protein stability using the established Rosetta and FoldX algorithms. Predictions for both are found to correlate only weakly with experimental measurements, suggesting improvements are needed in the underlying algorithms.
doi_str_mv 10.1371/journal.pone.0176255
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1901317083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A492500508</galeid><doaj_id>oai_doaj_org_article_37208aa02a7a40ffae4f3454e1a86f30</doaj_id><sourcerecordid>A492500508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-722fea61e6cbd84e5f0156bab6a5a22190e27c855f6375edc10b25d07fe916813</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEoqXwBggsISG42MWH2ElukKqKQ6VKlaBwa02S8a6LE29t74rlZXhVvN1t6aJeoFw4Gn_z__Z4piieMzplomLvLv0yjOCmCz_ilLJKcSkfFIesEXyiOBUP7_wfFE9ivKRUilqpx8UBr6VgrJaHxe-LOYYBHIkJWutsWhMYe_LDjphsRzo_5o0xRWJ8IIw3ZAXBXge8IUAMDNatCSMzt-58tD2S-boP3kFEEnCFWTnNIREcf60HJNAlu7ox-WvZwUhaJBEXECBhVuwx2tmI_dPikQEX8dluPSq-ffxwcfJ5cnb-6fTk-GzSqYanScW5QVAMVdf2dYnSUCZVC60CCZyzhiKvulpKo0Qlse8YbbnsaWWwYapm4qh4udVdOB_1rrZR50QmWEVrkYnTLdF7uNSLYAcIa-3B6uuADzMNIdfMoRYVpzUA5VBBSY0BLI0oZYkMamUEzVrvd27LdsinwTEFcHui-zujneuZX2lZikapKgu82QkEf7XEmPRgY4fOwYh-uT13JctKbrxe_YPef7sdNYN8ATsan327jag-Lhsuc-9k7KiY3kPlr8fB5l5BY3N8L-HtXkJmEv5MM1jGqE-_fvl_9vz7Pvv6DjvPbZbm0btlsrlh98FyC3bBxxjQ3BaZUb2Zo5tq6M0c6d0c5bQXdx_oNulmcMQf0sQZ-A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901317083</pqid></control><display><type>article</type><title>Thermal stability and kinetic constants for 129 variants of a family 1 glycoside hydrolase reveal that enzyme activity and stability can be separately designed</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Carlin, Dylan Alexander ; Hapig-Ward, Siena ; Chan, Bill Wayne ; Damrau, Natalie ; Riley, Mary ; Caster, Ryan W ; Bethards, Bowen ; Siegel, Justin B</creator><contributor>Soares, Claudio M</contributor><creatorcontrib>Carlin, Dylan Alexander ; Hapig-Ward, Siena ; Chan, Bill Wayne ; Damrau, Natalie ; Riley, Mary ; Caster, Ryan W ; Bethards, Bowen ; Siegel, Justin B ; Soares, Claudio M</creatorcontrib><description>Accurate modeling of enzyme activity and stability is an important goal of the protein engineering community. However, studies seeking to evaluate current progress are limited by small data sets of quantitative kinetic constants and thermal stability measurements. Here, we report quantitative measurements of soluble protein expression in E. coli, thermal stability, and Michaelis-Menten constants (kcat, KM, and kcat/KM) for 129 designed mutants of a glycoside hydrolase. Statistical analyses reveal that functional Tm is independent of kcat, KM, and kcat/KM in this system, illustrating that an individual mutation can modulate these functional parameters independently. In addition, this data set is used to evaluate computational predictions of protein stability using the established Rosetta and FoldX algorithms. Predictions for both are found to correlate only weakly with experimental measurements, suggesting improvements are needed in the underlying algorithms.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0176255</identifier><identifier>PMID: 28531185</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Amino acid sequence ; Antibiotic resistance ; Barnase ; Benchmarks ; Biocatalysts ; Biochemistry ; Biology and Life Sciences ; Catalysis ; Catalysts ; Catalytic Domain ; Cloning, Molecular ; Computer applications ; Computer programs ; Crystal structure ; Crystallography, X-Ray ; Datasets ; Design ; Directed evolution ; E coli ; Electrostatic properties ; Engineering ; Enzymatic activity ; Enzyme activity ; Enzyme kinetics ; Enzyme Stability ; Enzymes ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Gene mutation ; Genetic Variation ; Genetics ; Genomes ; Glycosidases ; Glycoside hydrolase ; Glycoside Hydrolases - chemistry ; Glycoside Hydrolases - genetics ; Glycosides ; Hydrolases ; Hydrolysis ; Immunogenicity ; Influenza ; Inhibitors ; Kinetics ; Learning algorithms ; Machinery ; Macromolecules ; Models, Molecular ; Molecular modelling ; Mutagenesis ; Mutants ; Mutation ; Optimization ; Peptides ; Physical Sciences ; Protein expression ; Protein Structure, Tertiary ; Proteins ; Public access ; Research and Analysis Methods ; Residues ; Statistical analysis ; Temperature ; Thermal stability</subject><ispartof>PloS one, 2017-05, Vol.12 (5), p.e0176255-e0176255</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Carlin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Carlin et al 2017 Carlin et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-722fea61e6cbd84e5f0156bab6a5a22190e27c855f6375edc10b25d07fe916813</citedby><cites>FETCH-LOGICAL-c692t-722fea61e6cbd84e5f0156bab6a5a22190e27c855f6375edc10b25d07fe916813</cites><orcidid>0000-0002-8729-734X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5439667/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5439667/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28531185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Soares, Claudio M</contributor><creatorcontrib>Carlin, Dylan Alexander</creatorcontrib><creatorcontrib>Hapig-Ward, Siena</creatorcontrib><creatorcontrib>Chan, Bill Wayne</creatorcontrib><creatorcontrib>Damrau, Natalie</creatorcontrib><creatorcontrib>Riley, Mary</creatorcontrib><creatorcontrib>Caster, Ryan W</creatorcontrib><creatorcontrib>Bethards, Bowen</creatorcontrib><creatorcontrib>Siegel, Justin B</creatorcontrib><title>Thermal stability and kinetic constants for 129 variants of a family 1 glycoside hydrolase reveal that enzyme activity and stability can be separately designed</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Accurate modeling of enzyme activity and stability is an important goal of the protein engineering community. However, studies seeking to evaluate current progress are limited by small data sets of quantitative kinetic constants and thermal stability measurements. Here, we report quantitative measurements of soluble protein expression in E. coli, thermal stability, and Michaelis-Menten constants (kcat, KM, and kcat/KM) for 129 designed mutants of a glycoside hydrolase. Statistical analyses reveal that functional Tm is independent of kcat, KM, and kcat/KM in this system, illustrating that an individual mutation can modulate these functional parameters independently. In addition, this data set is used to evaluate computational predictions of protein stability using the established Rosetta and FoldX algorithms. Predictions for both are found to correlate only weakly with experimental measurements, suggesting improvements are needed in the underlying algorithms.</description><subject>Algorithms</subject><subject>Amino acid sequence</subject><subject>Antibiotic resistance</subject><subject>Barnase</subject><subject>Benchmarks</subject><subject>Biocatalysts</subject><subject>Biochemistry</subject><subject>Biology and Life Sciences</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic Domain</subject><subject>Cloning, Molecular</subject><subject>Computer applications</subject><subject>Computer programs</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Datasets</subject><subject>Design</subject><subject>Directed evolution</subject><subject>E coli</subject><subject>Electrostatic properties</subject><subject>Engineering</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Enzyme kinetics</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Gene mutation</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Glycosidases</subject><subject>Glycoside hydrolase</subject><subject>Glycoside Hydrolases - chemistry</subject><subject>Glycoside Hydrolases - genetics</subject><subject>Glycosides</subject><subject>Hydrolases</subject><subject>Hydrolysis</subject><subject>Immunogenicity</subject><subject>Influenza</subject><subject>Inhibitors</subject><subject>Kinetics</subject><subject>Learning algorithms</subject><subject>Machinery</subject><subject>Macromolecules</subject><subject>Models, Molecular</subject><subject>Molecular modelling</subject><subject>Mutagenesis</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Peptides</subject><subject>Physical Sciences</subject><subject>Protein expression</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Public access</subject><subject>Research and Analysis Methods</subject><subject>Residues</subject><subject>Statistical analysis</subject><subject>Temperature</subject><subject>Thermal stability</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEoqXwBggsISG42MWH2ElukKqKQ6VKlaBwa02S8a6LE29t74rlZXhVvN1t6aJeoFw4Gn_z__Z4piieMzplomLvLv0yjOCmCz_ilLJKcSkfFIesEXyiOBUP7_wfFE9ivKRUilqpx8UBr6VgrJaHxe-LOYYBHIkJWutsWhMYe_LDjphsRzo_5o0xRWJ8IIw3ZAXBXge8IUAMDNatCSMzt-58tD2S-boP3kFEEnCFWTnNIREcf60HJNAlu7ox-WvZwUhaJBEXECBhVuwx2tmI_dPikQEX8dluPSq-ffxwcfJ5cnb-6fTk-GzSqYanScW5QVAMVdf2dYnSUCZVC60CCZyzhiKvulpKo0Qlse8YbbnsaWWwYapm4qh4udVdOB_1rrZR50QmWEVrkYnTLdF7uNSLYAcIa-3B6uuADzMNIdfMoRYVpzUA5VBBSY0BLI0oZYkMamUEzVrvd27LdsinwTEFcHui-zujneuZX2lZikapKgu82QkEf7XEmPRgY4fOwYh-uT13JctKbrxe_YPef7sdNYN8ATsan327jag-Lhsuc-9k7KiY3kPlr8fB5l5BY3N8L-HtXkJmEv5MM1jGqE-_fvl_9vz7Pvv6DjvPbZbm0btlsrlh98FyC3bBxxjQ3BaZUb2Zo5tq6M0c6d0c5bQXdx_oNulmcMQf0sQZ-A</recordid><startdate>20170522</startdate><enddate>20170522</enddate><creator>Carlin, Dylan Alexander</creator><creator>Hapig-Ward, Siena</creator><creator>Chan, Bill Wayne</creator><creator>Damrau, Natalie</creator><creator>Riley, Mary</creator><creator>Caster, Ryan W</creator><creator>Bethards, Bowen</creator><creator>Siegel, Justin B</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8729-734X</orcidid></search><sort><creationdate>20170522</creationdate><title>Thermal stability and kinetic constants for 129 variants of a family 1 glycoside hydrolase reveal that enzyme activity and stability can be separately designed</title><author>Carlin, Dylan Alexander ; Hapig-Ward, Siena ; Chan, Bill Wayne ; Damrau, Natalie ; Riley, Mary ; Caster, Ryan W ; Bethards, Bowen ; Siegel, Justin B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-722fea61e6cbd84e5f0156bab6a5a22190e27c855f6375edc10b25d07fe916813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Amino acid sequence</topic><topic>Antibiotic resistance</topic><topic>Barnase</topic><topic>Benchmarks</topic><topic>Biocatalysts</topic><topic>Biochemistry</topic><topic>Biology and Life Sciences</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic Domain</topic><topic>Cloning, Molecular</topic><topic>Computer applications</topic><topic>Computer programs</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Datasets</topic><topic>Design</topic><topic>Directed evolution</topic><topic>E coli</topic><topic>Electrostatic properties</topic><topic>Engineering</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Enzyme kinetics</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Gene mutation</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Glycosidases</topic><topic>Glycoside hydrolase</topic><topic>Glycoside Hydrolases - chemistry</topic><topic>Glycoside Hydrolases - genetics</topic><topic>Glycosides</topic><topic>Hydrolases</topic><topic>Hydrolysis</topic><topic>Immunogenicity</topic><topic>Influenza</topic><topic>Inhibitors</topic><topic>Kinetics</topic><topic>Learning algorithms</topic><topic>Machinery</topic><topic>Macromolecules</topic><topic>Models, Molecular</topic><topic>Molecular modelling</topic><topic>Mutagenesis</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Peptides</topic><topic>Physical Sciences</topic><topic>Protein expression</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Public access</topic><topic>Research and Analysis Methods</topic><topic>Residues</topic><topic>Statistical analysis</topic><topic>Temperature</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carlin, Dylan Alexander</creatorcontrib><creatorcontrib>Hapig-Ward, Siena</creatorcontrib><creatorcontrib>Chan, Bill Wayne</creatorcontrib><creatorcontrib>Damrau, Natalie</creatorcontrib><creatorcontrib>Riley, Mary</creatorcontrib><creatorcontrib>Caster, Ryan W</creatorcontrib><creatorcontrib>Bethards, Bowen</creatorcontrib><creatorcontrib>Siegel, Justin B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carlin, Dylan Alexander</au><au>Hapig-Ward, Siena</au><au>Chan, Bill Wayne</au><au>Damrau, Natalie</au><au>Riley, Mary</au><au>Caster, Ryan W</au><au>Bethards, Bowen</au><au>Siegel, Justin B</au><au>Soares, Claudio M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal stability and kinetic constants for 129 variants of a family 1 glycoside hydrolase reveal that enzyme activity and stability can be separately designed</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-05-22</date><risdate>2017</risdate><volume>12</volume><issue>5</issue><spage>e0176255</spage><epage>e0176255</epage><pages>e0176255-e0176255</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Accurate modeling of enzyme activity and stability is an important goal of the protein engineering community. However, studies seeking to evaluate current progress are limited by small data sets of quantitative kinetic constants and thermal stability measurements. Here, we report quantitative measurements of soluble protein expression in E. coli, thermal stability, and Michaelis-Menten constants (kcat, KM, and kcat/KM) for 129 designed mutants of a glycoside hydrolase. Statistical analyses reveal that functional Tm is independent of kcat, KM, and kcat/KM in this system, illustrating that an individual mutation can modulate these functional parameters independently. In addition, this data set is used to evaluate computational predictions of protein stability using the established Rosetta and FoldX algorithms. Predictions for both are found to correlate only weakly with experimental measurements, suggesting improvements are needed in the underlying algorithms.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28531185</pmid><doi>10.1371/journal.pone.0176255</doi><tpages>e0176255</tpages><orcidid>https://orcid.org/0000-0002-8729-734X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-05, Vol.12 (5), p.e0176255-e0176255
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1901317083
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Amino acid sequence
Antibiotic resistance
Barnase
Benchmarks
Biocatalysts
Biochemistry
Biology and Life Sciences
Catalysis
Catalysts
Catalytic Domain
Cloning, Molecular
Computer applications
Computer programs
Crystal structure
Crystallography, X-Ray
Datasets
Design
Directed evolution
E coli
Electrostatic properties
Engineering
Enzymatic activity
Enzyme activity
Enzyme kinetics
Enzyme Stability
Enzymes
Escherichia coli
Escherichia coli - enzymology
Escherichia coli - genetics
Gene mutation
Genetic Variation
Genetics
Genomes
Glycosidases
Glycoside hydrolase
Glycoside Hydrolases - chemistry
Glycoside Hydrolases - genetics
Glycosides
Hydrolases
Hydrolysis
Immunogenicity
Influenza
Inhibitors
Kinetics
Learning algorithms
Machinery
Macromolecules
Models, Molecular
Molecular modelling
Mutagenesis
Mutants
Mutation
Optimization
Peptides
Physical Sciences
Protein expression
Protein Structure, Tertiary
Proteins
Public access
Research and Analysis Methods
Residues
Statistical analysis
Temperature
Thermal stability
title Thermal stability and kinetic constants for 129 variants of a family 1 glycoside hydrolase reveal that enzyme activity and stability can be separately designed
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20stability%20and%20kinetic%20constants%20for%20129%20variants%20of%20a%20family%201%20glycoside%20hydrolase%20reveal%20that%20enzyme%20activity%20and%20stability%20can%20be%20separately%20designed&rft.jtitle=PloS%20one&rft.au=Carlin,%20Dylan%20Alexander&rft.date=2017-05-22&rft.volume=12&rft.issue=5&rft.spage=e0176255&rft.epage=e0176255&rft.pages=e0176255-e0176255&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0176255&rft_dat=%3Cgale_plos_%3EA492500508%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901317083&rft_id=info:pmid/28531185&rft_galeid=A492500508&rft_doaj_id=oai_doaj_org_article_37208aa02a7a40ffae4f3454e1a86f30&rfr_iscdi=true