Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain

Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-05, Vol.12 (5), p.e0177794-e0177794
Hauptverfasser: Lopopolo, Alessandro, Frank, Stefan L, van den Bosch, Antal, Willems, Roel M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0177794
container_issue 5
container_start_page e0177794
container_title PloS one
container_volume 12
creator Lopopolo, Alessandro
Frank, Stefan L
van den Bosch, Antal
Willems, Roel M
description Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have proven to be useful tools for studying how language is processed as a sequence of symbols unfolding in time. Conditional probabilities between sequences of words are at the basis of probabilistic measures such as surprisal and perplexity which have been successfully used as predictors of several behavioural and neural correlates of sentence processing. Here we computed perplexity from sequences of words and their parts of speech, and their phonemic transcriptions. Brain activity time-locked to each word is regressed on the three model-derived measures. We observe that the brain keeps track of the statistical structure of lexical, syntactic and phonological information in distinct areas.
doi_str_mv 10.1371/journal.pone.0177794
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1900218159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A491954212</galeid><doaj_id>oai_doaj_org_article_17c6b7fda3bd486999e5ece0df05b755</doaj_id><sourcerecordid>A491954212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-74742fd31deeff96d3f485e195fc232d531a87e072ee49ea33590c306ea6e6f73</originalsourceid><addsrcrecordid>eNptUk1vEzEQXSEQLYF_gMASlyI1wV5_rS9IVcVHpSIO0LPleMcbR7t2sDcV_fc4ybZqUOWDrZk3782MX1W9JXhBqCSf1nGbgukXmxhggYmUUrFn1SlRtJ6LGtPnj94n1auc1xhz2gjxsjqpG85qqsRpdXuTfehQHqNdmTx6i3oTuq3pAA2xhT6js1_XPz6iMaLBbFAPf701_TnKd2E0tuDPkQkt2qxiiH3sdknkg4tpMKOPAW1StJD3Gj6gcQVomYwPr6sXzvQZ3kz3rLr5-uX35ff59c9vV5cX13PLFR3nkklWu5aSFsA5JVrqWMOBKO5sTeuWU2IaCVjWAEyBoZQrbCkWYAQIJ-msen_g3fQx62llWROFcU0aUkRm1dUB0Uaz1pvkB5PudDRe7wMxddqkMmcPmkgrltK1hi5b1gilFHCwgFuH-VJyXrg-T2rb5QCthTAm0x-RHmeCX-ku3mrOqGgILQRnE0GKf7aQRz34bKEvfwJxu--bEoExawr0w3_Qp6ebUJ0pA-w-pujaHam-YKrskdWkLqjFE6hyWhi8Lf5yvsSPCtihwKaYcwL3MCPBeufO-2b0zp16cmcpe_d4Pw9F93ak_wBhk-Lo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1900218159</pqid></control><display><type>article</type><title>Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Lopopolo, Alessandro ; Frank, Stefan L ; van den Bosch, Antal ; Willems, Roel M</creator><creatorcontrib>Lopopolo, Alessandro ; Frank, Stefan L ; van den Bosch, Antal ; Willems, Roel M</creatorcontrib><description>Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have proven to be useful tools for studying how language is processed as a sequence of symbols unfolding in time. Conditional probabilities between sequences of words are at the basis of probabilistic measures such as surprisal and perplexity which have been successfully used as predictors of several behavioural and neural correlates of sentence processing. Here we computed perplexity from sequences of words and their parts of speech, and their phonemic transcriptions. Brain activity time-locked to each word is regressed on the three model-derived measures. We observe that the brain keeps track of the statistical structure of lexical, syntactic and phonological information in distinct areas.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0177794</identifier><identifier>PMID: 28542396</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adolescent ; Adult ; Biology and Life Sciences ; Brain ; Brain - diagnostic imaging ; Brain - physiology ; Brain Mapping ; Cerebral cortex ; Coding ; Cognition ; Cognition &amp; reasoning ; Cognitive ability ; Computation ; Computational neuroscience ; Cortex (auditory) ; Cortex (frontal) ; Cortex (premotor) ; Cortex (temporal) ; Data acquisition ; Data collection ; Data processing ; Decomposition ; Eye (anatomy) ; Female ; Frontal lobe ; Functional magnetic resonance imaging ; Gravitation ; Humans ; Image processing ; Image Processing, Computer-Assisted ; Imagery ; Information processing ; Language ; Listening comprehension ; Magnetic Resonance Imaging ; Male ; Mathematical models ; Medicine and Health Sciences ; Mental Processes - physiology ; Models, Neurological ; Natural language processing ; Nervous system ; Neural coding ; Neurodegenerative diseases ; Neuroimaging ; Neurology ; Perception ; Prefrontal cortex ; Probability theory ; Regression analysis ; Representations ; Research and Analysis Methods ; Schools ; Segmentation ; Semantics ; Sentences ; Social Sciences ; Speech ; Stochastic models ; Stochastic Processes ; Streams ; Studies ; Symbols ; Temporal lobe ; Transcription ; Visual cortex ; Visual perception ; Visual system ; Young Adult</subject><ispartof>PloS one, 2017-05, Vol.12 (5), p.e0177794-e0177794</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Lopopolo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Lopopolo et al 2017 Lopopolo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-74742fd31deeff96d3f485e195fc232d531a87e072ee49ea33590c306ea6e6f73</citedby><cites>FETCH-LOGICAL-c593t-74742fd31deeff96d3f485e195fc232d531a87e072ee49ea33590c306ea6e6f73</cites><orcidid>0000-0003-3938-6687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436813/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436813/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28542396$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopopolo, Alessandro</creatorcontrib><creatorcontrib>Frank, Stefan L</creatorcontrib><creatorcontrib>van den Bosch, Antal</creatorcontrib><creatorcontrib>Willems, Roel M</creatorcontrib><title>Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have proven to be useful tools for studying how language is processed as a sequence of symbols unfolding in time. Conditional probabilities between sequences of words are at the basis of probabilistic measures such as surprisal and perplexity which have been successfully used as predictors of several behavioural and neural correlates of sentence processing. Here we computed perplexity from sequences of words and their parts of speech, and their phonemic transcriptions. Brain activity time-locked to each word is regressed on the three model-derived measures. We observe that the brain keeps track of the statistical structure of lexical, syntactic and phonological information in distinct areas.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>Cerebral cortex</subject><subject>Coding</subject><subject>Cognition</subject><subject>Cognition &amp; reasoning</subject><subject>Cognitive ability</subject><subject>Computation</subject><subject>Computational neuroscience</subject><subject>Cortex (auditory)</subject><subject>Cortex (frontal)</subject><subject>Cortex (premotor)</subject><subject>Cortex (temporal)</subject><subject>Data acquisition</subject><subject>Data collection</subject><subject>Data processing</subject><subject>Decomposition</subject><subject>Eye (anatomy)</subject><subject>Female</subject><subject>Frontal lobe</subject><subject>Functional magnetic resonance imaging</subject><subject>Gravitation</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imagery</subject><subject>Information processing</subject><subject>Language</subject><subject>Listening comprehension</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Mental Processes - physiology</subject><subject>Models, Neurological</subject><subject>Natural language processing</subject><subject>Nervous system</subject><subject>Neural coding</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Perception</subject><subject>Prefrontal cortex</subject><subject>Probability theory</subject><subject>Regression analysis</subject><subject>Representations</subject><subject>Research and Analysis Methods</subject><subject>Schools</subject><subject>Segmentation</subject><subject>Semantics</subject><subject>Sentences</subject><subject>Social Sciences</subject><subject>Speech</subject><subject>Stochastic models</subject><subject>Stochastic Processes</subject><subject>Streams</subject><subject>Studies</subject><subject>Symbols</subject><subject>Temporal lobe</subject><subject>Transcription</subject><subject>Visual cortex</subject><subject>Visual perception</subject><subject>Visual system</subject><subject>Young Adult</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1vEzEQXSEQLYF_gMASlyI1wV5_rS9IVcVHpSIO0LPleMcbR7t2sDcV_fc4ybZqUOWDrZk3782MX1W9JXhBqCSf1nGbgukXmxhggYmUUrFn1SlRtJ6LGtPnj94n1auc1xhz2gjxsjqpG85qqsRpdXuTfehQHqNdmTx6i3oTuq3pAA2xhT6js1_XPz6iMaLBbFAPf701_TnKd2E0tuDPkQkt2qxiiH3sdknkg4tpMKOPAW1StJD3Gj6gcQVomYwPr6sXzvQZ3kz3rLr5-uX35ff59c9vV5cX13PLFR3nkklWu5aSFsA5JVrqWMOBKO5sTeuWU2IaCVjWAEyBoZQrbCkWYAQIJ-msen_g3fQx62llWROFcU0aUkRm1dUB0Uaz1pvkB5PudDRe7wMxddqkMmcPmkgrltK1hi5b1gilFHCwgFuH-VJyXrg-T2rb5QCthTAm0x-RHmeCX-ku3mrOqGgILQRnE0GKf7aQRz34bKEvfwJxu--bEoExawr0w3_Qp6ebUJ0pA-w-pujaHam-YKrskdWkLqjFE6hyWhi8Lf5yvsSPCtihwKaYcwL3MCPBeufO-2b0zp16cmcpe_d4Pw9F93ak_wBhk-Lo</recordid><startdate>20170518</startdate><enddate>20170518</enddate><creator>Lopopolo, Alessandro</creator><creator>Frank, Stefan L</creator><creator>van den Bosch, Antal</creator><creator>Willems, Roel M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3938-6687</orcidid></search><sort><creationdate>20170518</creationdate><title>Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain</title><author>Lopopolo, Alessandro ; Frank, Stefan L ; van den Bosch, Antal ; Willems, Roel M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-74742fd31deeff96d3f485e195fc232d531a87e072ee49ea33590c306ea6e6f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>Cerebral cortex</topic><topic>Coding</topic><topic>Cognition</topic><topic>Cognition &amp; reasoning</topic><topic>Cognitive ability</topic><topic>Computation</topic><topic>Computational neuroscience</topic><topic>Cortex (auditory)</topic><topic>Cortex (frontal)</topic><topic>Cortex (premotor)</topic><topic>Cortex (temporal)</topic><topic>Data acquisition</topic><topic>Data collection</topic><topic>Data processing</topic><topic>Decomposition</topic><topic>Eye (anatomy)</topic><topic>Female</topic><topic>Frontal lobe</topic><topic>Functional magnetic resonance imaging</topic><topic>Gravitation</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imagery</topic><topic>Information processing</topic><topic>Language</topic><topic>Listening comprehension</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Mental Processes - physiology</topic><topic>Models, Neurological</topic><topic>Natural language processing</topic><topic>Nervous system</topic><topic>Neural coding</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Perception</topic><topic>Prefrontal cortex</topic><topic>Probability theory</topic><topic>Regression analysis</topic><topic>Representations</topic><topic>Research and Analysis Methods</topic><topic>Schools</topic><topic>Segmentation</topic><topic>Semantics</topic><topic>Sentences</topic><topic>Social Sciences</topic><topic>Speech</topic><topic>Stochastic models</topic><topic>Stochastic Processes</topic><topic>Streams</topic><topic>Studies</topic><topic>Symbols</topic><topic>Temporal lobe</topic><topic>Transcription</topic><topic>Visual cortex</topic><topic>Visual perception</topic><topic>Visual system</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopopolo, Alessandro</creatorcontrib><creatorcontrib>Frank, Stefan L</creatorcontrib><creatorcontrib>van den Bosch, Antal</creatorcontrib><creatorcontrib>Willems, Roel M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopopolo, Alessandro</au><au>Frank, Stefan L</au><au>van den Bosch, Antal</au><au>Willems, Roel M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-05-18</date><risdate>2017</risdate><volume>12</volume><issue>5</issue><spage>e0177794</spage><epage>e0177794</epage><pages>e0177794-e0177794</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have proven to be useful tools for studying how language is processed as a sequence of symbols unfolding in time. Conditional probabilities between sequences of words are at the basis of probabilistic measures such as surprisal and perplexity which have been successfully used as predictors of several behavioural and neural correlates of sentence processing. Here we computed perplexity from sequences of words and their parts of speech, and their phonemic transcriptions. Brain activity time-locked to each word is regressed on the three model-derived measures. We observe that the brain keeps track of the statistical structure of lexical, syntactic and phonological information in distinct areas.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28542396</pmid><doi>10.1371/journal.pone.0177794</doi><orcidid>https://orcid.org/0000-0003-3938-6687</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-05, Vol.12 (5), p.e0177794-e0177794
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1900218159
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Adolescent
Adult
Biology and Life Sciences
Brain
Brain - diagnostic imaging
Brain - physiology
Brain Mapping
Cerebral cortex
Coding
Cognition
Cognition & reasoning
Cognitive ability
Computation
Computational neuroscience
Cortex (auditory)
Cortex (frontal)
Cortex (premotor)
Cortex (temporal)
Data acquisition
Data collection
Data processing
Decomposition
Eye (anatomy)
Female
Frontal lobe
Functional magnetic resonance imaging
Gravitation
Humans
Image processing
Image Processing, Computer-Assisted
Imagery
Information processing
Language
Listening comprehension
Magnetic Resonance Imaging
Male
Mathematical models
Medicine and Health Sciences
Mental Processes - physiology
Models, Neurological
Natural language processing
Nervous system
Neural coding
Neurodegenerative diseases
Neuroimaging
Neurology
Perception
Prefrontal cortex
Probability theory
Regression analysis
Representations
Research and Analysis Methods
Schools
Segmentation
Semantics
Sentences
Social Sciences
Speech
Stochastic models
Stochastic Processes
Streams
Studies
Symbols
Temporal lobe
Transcription
Visual cortex
Visual perception
Visual system
Young Adult
title Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20stochastic%20language%20models%20(SLM)%20to%20map%20lexical,%20syntactic,%20and%20phonological%20information%20processing%20in%20the%20brain&rft.jtitle=PloS%20one&rft.au=Lopopolo,%20Alessandro&rft.date=2017-05-18&rft.volume=12&rft.issue=5&rft.spage=e0177794&rft.epage=e0177794&rft.pages=e0177794-e0177794&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0177794&rft_dat=%3Cgale_plos_%3EA491954212%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1900218159&rft_id=info:pmid/28542396&rft_galeid=A491954212&rft_doaj_id=oai_doaj_org_article_17c6b7fda3bd486999e5ece0df05b755&rfr_iscdi=true