Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain
Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phone...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-05, Vol.12 (5), p.e0177794-e0177794 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0177794 |
---|---|
container_issue | 5 |
container_start_page | e0177794 |
container_title | PloS one |
container_volume | 12 |
creator | Lopopolo, Alessandro Frank, Stefan L van den Bosch, Antal Willems, Roel M |
description | Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have proven to be useful tools for studying how language is processed as a sequence of symbols unfolding in time. Conditional probabilities between sequences of words are at the basis of probabilistic measures such as surprisal and perplexity which have been successfully used as predictors of several behavioural and neural correlates of sentence processing. Here we computed perplexity from sequences of words and their parts of speech, and their phonemic transcriptions. Brain activity time-locked to each word is regressed on the three model-derived measures. We observe that the brain keeps track of the statistical structure of lexical, syntactic and phonological information in distinct areas. |
doi_str_mv | 10.1371/journal.pone.0177794 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1900218159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A491954212</galeid><doaj_id>oai_doaj_org_article_17c6b7fda3bd486999e5ece0df05b755</doaj_id><sourcerecordid>A491954212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-74742fd31deeff96d3f485e195fc232d531a87e072ee49ea33590c306ea6e6f73</originalsourceid><addsrcrecordid>eNptUk1vEzEQXSEQLYF_gMASlyI1wV5_rS9IVcVHpSIO0LPleMcbR7t2sDcV_fc4ybZqUOWDrZk3782MX1W9JXhBqCSf1nGbgukXmxhggYmUUrFn1SlRtJ6LGtPnj94n1auc1xhz2gjxsjqpG85qqsRpdXuTfehQHqNdmTx6i3oTuq3pAA2xhT6js1_XPz6iMaLBbFAPf701_TnKd2E0tuDPkQkt2qxiiH3sdknkg4tpMKOPAW1StJD3Gj6gcQVomYwPr6sXzvQZ3kz3rLr5-uX35ff59c9vV5cX13PLFR3nkklWu5aSFsA5JVrqWMOBKO5sTeuWU2IaCVjWAEyBoZQrbCkWYAQIJ-msen_g3fQx62llWROFcU0aUkRm1dUB0Uaz1pvkB5PudDRe7wMxddqkMmcPmkgrltK1hi5b1gilFHCwgFuH-VJyXrg-T2rb5QCthTAm0x-RHmeCX-ku3mrOqGgILQRnE0GKf7aQRz34bKEvfwJxu--bEoExawr0w3_Qp6ebUJ0pA-w-pujaHam-YKrskdWkLqjFE6hyWhi8Lf5yvsSPCtihwKaYcwL3MCPBeufO-2b0zp16cmcpe_d4Pw9F93ak_wBhk-Lo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1900218159</pqid></control><display><type>article</type><title>Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Lopopolo, Alessandro ; Frank, Stefan L ; van den Bosch, Antal ; Willems, Roel M</creator><creatorcontrib>Lopopolo, Alessandro ; Frank, Stefan L ; van den Bosch, Antal ; Willems, Roel M</creatorcontrib><description>Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have proven to be useful tools for studying how language is processed as a sequence of symbols unfolding in time. Conditional probabilities between sequences of words are at the basis of probabilistic measures such as surprisal and perplexity which have been successfully used as predictors of several behavioural and neural correlates of sentence processing. Here we computed perplexity from sequences of words and their parts of speech, and their phonemic transcriptions. Brain activity time-locked to each word is regressed on the three model-derived measures. We observe that the brain keeps track of the statistical structure of lexical, syntactic and phonological information in distinct areas.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0177794</identifier><identifier>PMID: 28542396</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adolescent ; Adult ; Biology and Life Sciences ; Brain ; Brain - diagnostic imaging ; Brain - physiology ; Brain Mapping ; Cerebral cortex ; Coding ; Cognition ; Cognition & reasoning ; Cognitive ability ; Computation ; Computational neuroscience ; Cortex (auditory) ; Cortex (frontal) ; Cortex (premotor) ; Cortex (temporal) ; Data acquisition ; Data collection ; Data processing ; Decomposition ; Eye (anatomy) ; Female ; Frontal lobe ; Functional magnetic resonance imaging ; Gravitation ; Humans ; Image processing ; Image Processing, Computer-Assisted ; Imagery ; Information processing ; Language ; Listening comprehension ; Magnetic Resonance Imaging ; Male ; Mathematical models ; Medicine and Health Sciences ; Mental Processes - physiology ; Models, Neurological ; Natural language processing ; Nervous system ; Neural coding ; Neurodegenerative diseases ; Neuroimaging ; Neurology ; Perception ; Prefrontal cortex ; Probability theory ; Regression analysis ; Representations ; Research and Analysis Methods ; Schools ; Segmentation ; Semantics ; Sentences ; Social Sciences ; Speech ; Stochastic models ; Stochastic Processes ; Streams ; Studies ; Symbols ; Temporal lobe ; Transcription ; Visual cortex ; Visual perception ; Visual system ; Young Adult</subject><ispartof>PloS one, 2017-05, Vol.12 (5), p.e0177794-e0177794</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Lopopolo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Lopopolo et al 2017 Lopopolo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-74742fd31deeff96d3f485e195fc232d531a87e072ee49ea33590c306ea6e6f73</citedby><cites>FETCH-LOGICAL-c593t-74742fd31deeff96d3f485e195fc232d531a87e072ee49ea33590c306ea6e6f73</cites><orcidid>0000-0003-3938-6687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436813/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436813/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28542396$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopopolo, Alessandro</creatorcontrib><creatorcontrib>Frank, Stefan L</creatorcontrib><creatorcontrib>van den Bosch, Antal</creatorcontrib><creatorcontrib>Willems, Roel M</creatorcontrib><title>Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have proven to be useful tools for studying how language is processed as a sequence of symbols unfolding in time. Conditional probabilities between sequences of words are at the basis of probabilistic measures such as surprisal and perplexity which have been successfully used as predictors of several behavioural and neural correlates of sentence processing. Here we computed perplexity from sequences of words and their parts of speech, and their phonemic transcriptions. Brain activity time-locked to each word is regressed on the three model-derived measures. We observe that the brain keeps track of the statistical structure of lexical, syntactic and phonological information in distinct areas.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>Cerebral cortex</subject><subject>Coding</subject><subject>Cognition</subject><subject>Cognition & reasoning</subject><subject>Cognitive ability</subject><subject>Computation</subject><subject>Computational neuroscience</subject><subject>Cortex (auditory)</subject><subject>Cortex (frontal)</subject><subject>Cortex (premotor)</subject><subject>Cortex (temporal)</subject><subject>Data acquisition</subject><subject>Data collection</subject><subject>Data processing</subject><subject>Decomposition</subject><subject>Eye (anatomy)</subject><subject>Female</subject><subject>Frontal lobe</subject><subject>Functional magnetic resonance imaging</subject><subject>Gravitation</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imagery</subject><subject>Information processing</subject><subject>Language</subject><subject>Listening comprehension</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Mental Processes - physiology</subject><subject>Models, Neurological</subject><subject>Natural language processing</subject><subject>Nervous system</subject><subject>Neural coding</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Perception</subject><subject>Prefrontal cortex</subject><subject>Probability theory</subject><subject>Regression analysis</subject><subject>Representations</subject><subject>Research and Analysis Methods</subject><subject>Schools</subject><subject>Segmentation</subject><subject>Semantics</subject><subject>Sentences</subject><subject>Social Sciences</subject><subject>Speech</subject><subject>Stochastic models</subject><subject>Stochastic Processes</subject><subject>Streams</subject><subject>Studies</subject><subject>Symbols</subject><subject>Temporal lobe</subject><subject>Transcription</subject><subject>Visual cortex</subject><subject>Visual perception</subject><subject>Visual system</subject><subject>Young Adult</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1vEzEQXSEQLYF_gMASlyI1wV5_rS9IVcVHpSIO0LPleMcbR7t2sDcV_fc4ybZqUOWDrZk3782MX1W9JXhBqCSf1nGbgukXmxhggYmUUrFn1SlRtJ6LGtPnj94n1auc1xhz2gjxsjqpG85qqsRpdXuTfehQHqNdmTx6i3oTuq3pAA2xhT6js1_XPz6iMaLBbFAPf701_TnKd2E0tuDPkQkt2qxiiH3sdknkg4tpMKOPAW1StJD3Gj6gcQVomYwPr6sXzvQZ3kz3rLr5-uX35ff59c9vV5cX13PLFR3nkklWu5aSFsA5JVrqWMOBKO5sTeuWU2IaCVjWAEyBoZQrbCkWYAQIJ-msen_g3fQx62llWROFcU0aUkRm1dUB0Uaz1pvkB5PudDRe7wMxddqkMmcPmkgrltK1hi5b1gilFHCwgFuH-VJyXrg-T2rb5QCthTAm0x-RHmeCX-ku3mrOqGgILQRnE0GKf7aQRz34bKEvfwJxu--bEoExawr0w3_Qp6ebUJ0pA-w-pujaHam-YKrskdWkLqjFE6hyWhi8Lf5yvsSPCtihwKaYcwL3MCPBeufO-2b0zp16cmcpe_d4Pw9F93ak_wBhk-Lo</recordid><startdate>20170518</startdate><enddate>20170518</enddate><creator>Lopopolo, Alessandro</creator><creator>Frank, Stefan L</creator><creator>van den Bosch, Antal</creator><creator>Willems, Roel M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3938-6687</orcidid></search><sort><creationdate>20170518</creationdate><title>Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain</title><author>Lopopolo, Alessandro ; Frank, Stefan L ; van den Bosch, Antal ; Willems, Roel M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-74742fd31deeff96d3f485e195fc232d531a87e072ee49ea33590c306ea6e6f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>Cerebral cortex</topic><topic>Coding</topic><topic>Cognition</topic><topic>Cognition & reasoning</topic><topic>Cognitive ability</topic><topic>Computation</topic><topic>Computational neuroscience</topic><topic>Cortex (auditory)</topic><topic>Cortex (frontal)</topic><topic>Cortex (premotor)</topic><topic>Cortex (temporal)</topic><topic>Data acquisition</topic><topic>Data collection</topic><topic>Data processing</topic><topic>Decomposition</topic><topic>Eye (anatomy)</topic><topic>Female</topic><topic>Frontal lobe</topic><topic>Functional magnetic resonance imaging</topic><topic>Gravitation</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imagery</topic><topic>Information processing</topic><topic>Language</topic><topic>Listening comprehension</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Mental Processes - physiology</topic><topic>Models, Neurological</topic><topic>Natural language processing</topic><topic>Nervous system</topic><topic>Neural coding</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Perception</topic><topic>Prefrontal cortex</topic><topic>Probability theory</topic><topic>Regression analysis</topic><topic>Representations</topic><topic>Research and Analysis Methods</topic><topic>Schools</topic><topic>Segmentation</topic><topic>Semantics</topic><topic>Sentences</topic><topic>Social Sciences</topic><topic>Speech</topic><topic>Stochastic models</topic><topic>Stochastic Processes</topic><topic>Streams</topic><topic>Studies</topic><topic>Symbols</topic><topic>Temporal lobe</topic><topic>Transcription</topic><topic>Visual cortex</topic><topic>Visual perception</topic><topic>Visual system</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopopolo, Alessandro</creatorcontrib><creatorcontrib>Frank, Stefan L</creatorcontrib><creatorcontrib>van den Bosch, Antal</creatorcontrib><creatorcontrib>Willems, Roel M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopopolo, Alessandro</au><au>Frank, Stefan L</au><au>van den Bosch, Antal</au><au>Willems, Roel M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-05-18</date><risdate>2017</risdate><volume>12</volume><issue>5</issue><spage>e0177794</spage><epage>e0177794</epage><pages>e0177794-e0177794</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have proven to be useful tools for studying how language is processed as a sequence of symbols unfolding in time. Conditional probabilities between sequences of words are at the basis of probabilistic measures such as surprisal and perplexity which have been successfully used as predictors of several behavioural and neural correlates of sentence processing. Here we computed perplexity from sequences of words and their parts of speech, and their phonemic transcriptions. Brain activity time-locked to each word is regressed on the three model-derived measures. We observe that the brain keeps track of the statistical structure of lexical, syntactic and phonological information in distinct areas.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28542396</pmid><doi>10.1371/journal.pone.0177794</doi><orcidid>https://orcid.org/0000-0003-3938-6687</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-05, Vol.12 (5), p.e0177794-e0177794 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1900218159 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Adolescent Adult Biology and Life Sciences Brain Brain - diagnostic imaging Brain - physiology Brain Mapping Cerebral cortex Coding Cognition Cognition & reasoning Cognitive ability Computation Computational neuroscience Cortex (auditory) Cortex (frontal) Cortex (premotor) Cortex (temporal) Data acquisition Data collection Data processing Decomposition Eye (anatomy) Female Frontal lobe Functional magnetic resonance imaging Gravitation Humans Image processing Image Processing, Computer-Assisted Imagery Information processing Language Listening comprehension Magnetic Resonance Imaging Male Mathematical models Medicine and Health Sciences Mental Processes - physiology Models, Neurological Natural language processing Nervous system Neural coding Neurodegenerative diseases Neuroimaging Neurology Perception Prefrontal cortex Probability theory Regression analysis Representations Research and Analysis Methods Schools Segmentation Semantics Sentences Social Sciences Speech Stochastic models Stochastic Processes Streams Studies Symbols Temporal lobe Transcription Visual cortex Visual perception Visual system Young Adult |
title | Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20stochastic%20language%20models%20(SLM)%20to%20map%20lexical,%20syntactic,%20and%20phonological%20information%20processing%20in%20the%20brain&rft.jtitle=PloS%20one&rft.au=Lopopolo,%20Alessandro&rft.date=2017-05-18&rft.volume=12&rft.issue=5&rft.spage=e0177794&rft.epage=e0177794&rft.pages=e0177794-e0177794&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0177794&rft_dat=%3Cgale_plos_%3EA491954212%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1900218159&rft_id=info:pmid/28542396&rft_galeid=A491954212&rft_doaj_id=oai_doaj_org_article_17c6b7fda3bd486999e5ece0df05b755&rfr_iscdi=true |