Influence of the ferric uptake regulator (Fur) protein on pathogenicity in Pectobacterium carotovorum subsp. brasiliense

Iron is an important nutrient for the survival and growth of many organisms. In order to survive, iron uptake from the environment must be strictly regulated and maintained to avoid iron toxicity. The ferric uptake regulator protein (Fur) regulates genes involved in iron homeostasis in many bacteria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-05, Vol.12 (5), p.e0177647-e0177647
Hauptverfasser: Tanui, Collins Kipngetich, Shyntum, Divine Yutefar, Priem, Stefan Louis, Theron, Jacques, Moleleki, Lucy Novungayo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0177647
container_issue 5
container_start_page e0177647
container_title PloS one
container_volume 12
creator Tanui, Collins Kipngetich
Shyntum, Divine Yutefar
Priem, Stefan Louis
Theron, Jacques
Moleleki, Lucy Novungayo
description Iron is an important nutrient for the survival and growth of many organisms. In order to survive, iron uptake from the environment must be strictly regulated and maintained to avoid iron toxicity. The ferric uptake regulator protein (Fur) regulates genes involved in iron homeostasis in many bacteria, including phytopathogens. However, to date, the role played by Fur in the biology of Pectobacterium carotovorum subsp. brasiliense (Pcb1692), an important pathogen of potatoes, has not yet been studied. To this end, we used the lambda recombineering method to generate a fur mutant strain of Pcb1692 and assessed the virulence and fitness of the mutant strain. The results showed that production of siderophores in Pcb1692Δfur increased compared to the Pcb1692 wild-type and the complemented strain Pcb1692Δfur-pfur. However, production of N-acyl homoserine lactone (AHLs), biofilm formation, exopolysaccharide (EPS) production, virulence on potato tubers and swimming motility, were all significantly decreased in Pcb1692Δfur compared to the wild-type and complemented Pcb1692Δfur-pfur strains. The Pcb1692Δfur mutant also demonstrated significant sensitivity to oxidative stress when exposed to H2O2. Consistent with phenotypic results, qRT-PCR results demonstrated that Fur down-regulates genes which encode proteins associated with: iron uptake (HasA-extracellular heme-binding protein and Ferrodoxin-AED-0004132), stress response (SodC-superoxide dismutase), plant cell wall degrading enzymes (PrtA and CelV) and motility (FlhC and MotA). We conclude that the ferric uptake regulator protein (Fur) of Pcb1692 regulates traits that are important to host-pathogens interactions.
doi_str_mv 10.1371/journal.pone.0177647
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1899788842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A491887527</galeid><doaj_id>oai_doaj_org_article_aecc9ba8354f4d879219ffa836f562a1</doaj_id><sourcerecordid>A491887527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-ed46e82ffcccdb99948d9d8b5a296c35b16ecc55baa44c2d60c2fa79f4fef5383</originalsourceid><addsrcrecordid>eNptUl1vFCEUnRiNrdV_YJTEl_qw68AAAy9NmsbqJk30QZ8Jw1x2WWdhBKax_17WnTZd0_DA5XLOuR85VfUW10vctPjTNkzR62E5Bg_LGrctp-2z6hTLhiw4qZvnj-KT6lVK27pmjeD8ZXVCBKOs5uy0-rPydpjAG0DBorwBZCFGZ9A0Zv0LUIT1NOgcIjq_nuJHNMaQwXkUPBp13oQ1eGdcvkMl9x1MDp02GaKbdsjogg23IZY4TV0al6iLOrnBgU_wunph9ZDgzXyfVT-vP_-4-rq4-fZldXV5szBMNnkBPeUgiLXGmL6TUlLRy150TBPJTcM6zMEYxjqtKTWk57UhVrfSUgu2jNucVe8PuuMQkpqXlhQWUrZCCEoKYnVA9EFv1RjdTsc7FbRT_xIhrpWO2ZkBlC61ZKdFw6ilvWglwdLa8uaWcaJx0bqYq03dDnoDPkc9HIke_3i3UetwqxhtGKGsCJzPAjH8niBltXPJwDBoD2Eqfcu6wbx0v4d--A_69HQzaq3LAM7bUOqavai6pBIL0TLSFtTyCVQ5PeycKQ6zruSPCPRAMDGkFME-zIhrtffnfTNq7081-7PQ3j3ezwPp3pDNX0zt5iw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899788842</pqid></control><display><type>article</type><title>Influence of the ferric uptake regulator (Fur) protein on pathogenicity in Pectobacterium carotovorum subsp. brasiliense</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tanui, Collins Kipngetich ; Shyntum, Divine Yutefar ; Priem, Stefan Louis ; Theron, Jacques ; Moleleki, Lucy Novungayo</creator><contributor>Semsey, Szabolcs</contributor><creatorcontrib>Tanui, Collins Kipngetich ; Shyntum, Divine Yutefar ; Priem, Stefan Louis ; Theron, Jacques ; Moleleki, Lucy Novungayo ; Semsey, Szabolcs</creatorcontrib><description>Iron is an important nutrient for the survival and growth of many organisms. In order to survive, iron uptake from the environment must be strictly regulated and maintained to avoid iron toxicity. The ferric uptake regulator protein (Fur) regulates genes involved in iron homeostasis in many bacteria, including phytopathogens. However, to date, the role played by Fur in the biology of Pectobacterium carotovorum subsp. brasiliense (Pcb1692), an important pathogen of potatoes, has not yet been studied. To this end, we used the lambda recombineering method to generate a fur mutant strain of Pcb1692 and assessed the virulence and fitness of the mutant strain. The results showed that production of siderophores in Pcb1692Δfur increased compared to the Pcb1692 wild-type and the complemented strain Pcb1692Δfur-pfur. However, production of N-acyl homoserine lactone (AHLs), biofilm formation, exopolysaccharide (EPS) production, virulence on potato tubers and swimming motility, were all significantly decreased in Pcb1692Δfur compared to the wild-type and complemented Pcb1692Δfur-pfur strains. The Pcb1692Δfur mutant also demonstrated significant sensitivity to oxidative stress when exposed to H2O2. Consistent with phenotypic results, qRT-PCR results demonstrated that Fur down-regulates genes which encode proteins associated with: iron uptake (HasA-extracellular heme-binding protein and Ferrodoxin-AED-0004132), stress response (SodC-superoxide dismutase), plant cell wall degrading enzymes (PrtA and CelV) and motility (FlhC and MotA). We conclude that the ferric uptake regulator protein (Fur) of Pcb1692 regulates traits that are important to host-pathogens interactions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0177647</identifier><identifier>PMID: 28545065</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>4-Butyrolactone - analogs &amp; derivatives ; 4-Butyrolactone - metabolism ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Biochemistry ; Biofilms ; Biofilms - growth &amp; development ; Biology and Life Sciences ; Biotechnology ; Cell walls ; Down-Regulation ; E coli ; Enterobacteriaceae ; Enzymes ; Fitness ; Genes ; Heme ; Homeostasis ; Host-Pathogen Interactions ; Hydrogen peroxide ; Hydrogen Peroxide - toxicity ; Iron ; Iron - metabolism ; Medicine and Health Sciences ; Microbiology ; Motility ; Mutagenesis ; N-Acyl homoserine lactone ; Oxidative stress ; Oxidative Stress - drug effects ; Pathogenesis ; Pathogenic bacteria ; Pathogenicity ; Pathogens ; Pectobacterium carotovorum - genetics ; Pectobacterium carotovorum - metabolism ; Pectobacterium carotovorum - pathogenicity ; Physical fitness ; Physiological aspects ; Plant pathology ; Polymerase chain reaction ; Potatoes ; Prokaryotes ; Proteins ; Regulation ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Research and Analysis Methods ; Siderophores ; Siderophores - metabolism ; Solanum tuberosum - microbiology ; Strain ; Superoxide dismutase ; Superoxide Dismutase - metabolism ; Swimming ; Toxicity ; Tubers ; Virulence ; Virulence (Microbiology) ; Virulence - genetics</subject><ispartof>PloS one, 2017-05, Vol.12 (5), p.e0177647-e0177647</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Tanui et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Tanui et al 2017 Tanui et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-ed46e82ffcccdb99948d9d8b5a296c35b16ecc55baa44c2d60c2fa79f4fef5383</citedby><cites>FETCH-LOGICAL-c593t-ed46e82ffcccdb99948d9d8b5a296c35b16ecc55baa44c2d60c2fa79f4fef5383</cites><orcidid>0000-0002-7109-242X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435245/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435245/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28545065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Semsey, Szabolcs</contributor><creatorcontrib>Tanui, Collins Kipngetich</creatorcontrib><creatorcontrib>Shyntum, Divine Yutefar</creatorcontrib><creatorcontrib>Priem, Stefan Louis</creatorcontrib><creatorcontrib>Theron, Jacques</creatorcontrib><creatorcontrib>Moleleki, Lucy Novungayo</creatorcontrib><title>Influence of the ferric uptake regulator (Fur) protein on pathogenicity in Pectobacterium carotovorum subsp. brasiliense</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Iron is an important nutrient for the survival and growth of many organisms. In order to survive, iron uptake from the environment must be strictly regulated and maintained to avoid iron toxicity. The ferric uptake regulator protein (Fur) regulates genes involved in iron homeostasis in many bacteria, including phytopathogens. However, to date, the role played by Fur in the biology of Pectobacterium carotovorum subsp. brasiliense (Pcb1692), an important pathogen of potatoes, has not yet been studied. To this end, we used the lambda recombineering method to generate a fur mutant strain of Pcb1692 and assessed the virulence and fitness of the mutant strain. The results showed that production of siderophores in Pcb1692Δfur increased compared to the Pcb1692 wild-type and the complemented strain Pcb1692Δfur-pfur. However, production of N-acyl homoserine lactone (AHLs), biofilm formation, exopolysaccharide (EPS) production, virulence on potato tubers and swimming motility, were all significantly decreased in Pcb1692Δfur compared to the wild-type and complemented Pcb1692Δfur-pfur strains. The Pcb1692Δfur mutant also demonstrated significant sensitivity to oxidative stress when exposed to H2O2. Consistent with phenotypic results, qRT-PCR results demonstrated that Fur down-regulates genes which encode proteins associated with: iron uptake (HasA-extracellular heme-binding protein and Ferrodoxin-AED-0004132), stress response (SodC-superoxide dismutase), plant cell wall degrading enzymes (PrtA and CelV) and motility (FlhC and MotA). We conclude that the ferric uptake regulator protein (Fur) of Pcb1692 regulates traits that are important to host-pathogens interactions.</description><subject>4-Butyrolactone - analogs &amp; derivatives</subject><subject>4-Butyrolactone - metabolism</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Biochemistry</subject><subject>Biofilms</subject><subject>Biofilms - growth &amp; development</subject><subject>Biology and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell walls</subject><subject>Down-Regulation</subject><subject>E coli</subject><subject>Enterobacteriaceae</subject><subject>Enzymes</subject><subject>Fitness</subject><subject>Genes</subject><subject>Heme</subject><subject>Homeostasis</subject><subject>Host-Pathogen Interactions</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide - toxicity</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Medicine and Health Sciences</subject><subject>Microbiology</subject><subject>Motility</subject><subject>Mutagenesis</subject><subject>N-Acyl homoserine lactone</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Pathogenesis</subject><subject>Pathogenic bacteria</subject><subject>Pathogenicity</subject><subject>Pathogens</subject><subject>Pectobacterium carotovorum - genetics</subject><subject>Pectobacterium carotovorum - metabolism</subject><subject>Pectobacterium carotovorum - pathogenicity</subject><subject>Physical fitness</subject><subject>Physiological aspects</subject><subject>Plant pathology</subject><subject>Polymerase chain reaction</subject><subject>Potatoes</subject><subject>Prokaryotes</subject><subject>Proteins</subject><subject>Regulation</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Research and Analysis Methods</subject><subject>Siderophores</subject><subject>Siderophores - metabolism</subject><subject>Solanum tuberosum - microbiology</subject><subject>Strain</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Swimming</subject><subject>Toxicity</subject><subject>Tubers</subject><subject>Virulence</subject><subject>Virulence (Microbiology)</subject><subject>Virulence - genetics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUl1vFCEUnRiNrdV_YJTEl_qw68AAAy9NmsbqJk30QZ8Jw1x2WWdhBKax_17WnTZd0_DA5XLOuR85VfUW10vctPjTNkzR62E5Bg_LGrctp-2z6hTLhiw4qZvnj-KT6lVK27pmjeD8ZXVCBKOs5uy0-rPydpjAG0DBorwBZCFGZ9A0Zv0LUIT1NOgcIjq_nuJHNMaQwXkUPBp13oQ1eGdcvkMl9x1MDp02GaKbdsjogg23IZY4TV0al6iLOrnBgU_wunph9ZDgzXyfVT-vP_-4-rq4-fZldXV5szBMNnkBPeUgiLXGmL6TUlLRy150TBPJTcM6zMEYxjqtKTWk57UhVrfSUgu2jNucVe8PuuMQkpqXlhQWUrZCCEoKYnVA9EFv1RjdTsc7FbRT_xIhrpWO2ZkBlC61ZKdFw6ilvWglwdLa8uaWcaJx0bqYq03dDnoDPkc9HIke_3i3UetwqxhtGKGsCJzPAjH8niBltXPJwDBoD2Eqfcu6wbx0v4d--A_69HQzaq3LAM7bUOqavai6pBIL0TLSFtTyCVQ5PeycKQ6zruSPCPRAMDGkFME-zIhrtffnfTNq7081-7PQ3j3ezwPp3pDNX0zt5iw</recordid><startdate>20170517</startdate><enddate>20170517</enddate><creator>Tanui, Collins Kipngetich</creator><creator>Shyntum, Divine Yutefar</creator><creator>Priem, Stefan Louis</creator><creator>Theron, Jacques</creator><creator>Moleleki, Lucy Novungayo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7109-242X</orcidid></search><sort><creationdate>20170517</creationdate><title>Influence of the ferric uptake regulator (Fur) protein on pathogenicity in Pectobacterium carotovorum subsp. brasiliense</title><author>Tanui, Collins Kipngetich ; Shyntum, Divine Yutefar ; Priem, Stefan Louis ; Theron, Jacques ; Moleleki, Lucy Novungayo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-ed46e82ffcccdb99948d9d8b5a296c35b16ecc55baa44c2d60c2fa79f4fef5383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>4-Butyrolactone - analogs &amp; derivatives</topic><topic>4-Butyrolactone - metabolism</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Biochemistry</topic><topic>Biofilms</topic><topic>Biofilms - growth &amp; development</topic><topic>Biology and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell walls</topic><topic>Down-Regulation</topic><topic>E coli</topic><topic>Enterobacteriaceae</topic><topic>Enzymes</topic><topic>Fitness</topic><topic>Genes</topic><topic>Heme</topic><topic>Homeostasis</topic><topic>Host-Pathogen Interactions</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide - toxicity</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Medicine and Health Sciences</topic><topic>Microbiology</topic><topic>Motility</topic><topic>Mutagenesis</topic><topic>N-Acyl homoserine lactone</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Pathogenesis</topic><topic>Pathogenic bacteria</topic><topic>Pathogenicity</topic><topic>Pathogens</topic><topic>Pectobacterium carotovorum - genetics</topic><topic>Pectobacterium carotovorum - metabolism</topic><topic>Pectobacterium carotovorum - pathogenicity</topic><topic>Physical fitness</topic><topic>Physiological aspects</topic><topic>Plant pathology</topic><topic>Polymerase chain reaction</topic><topic>Potatoes</topic><topic>Prokaryotes</topic><topic>Proteins</topic><topic>Regulation</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Research and Analysis Methods</topic><topic>Siderophores</topic><topic>Siderophores - metabolism</topic><topic>Solanum tuberosum - microbiology</topic><topic>Strain</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Swimming</topic><topic>Toxicity</topic><topic>Tubers</topic><topic>Virulence</topic><topic>Virulence (Microbiology)</topic><topic>Virulence - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanui, Collins Kipngetich</creatorcontrib><creatorcontrib>Shyntum, Divine Yutefar</creatorcontrib><creatorcontrib>Priem, Stefan Louis</creatorcontrib><creatorcontrib>Theron, Jacques</creatorcontrib><creatorcontrib>Moleleki, Lucy Novungayo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanui, Collins Kipngetich</au><au>Shyntum, Divine Yutefar</au><au>Priem, Stefan Louis</au><au>Theron, Jacques</au><au>Moleleki, Lucy Novungayo</au><au>Semsey, Szabolcs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of the ferric uptake regulator (Fur) protein on pathogenicity in Pectobacterium carotovorum subsp. brasiliense</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-05-17</date><risdate>2017</risdate><volume>12</volume><issue>5</issue><spage>e0177647</spage><epage>e0177647</epage><pages>e0177647-e0177647</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Iron is an important nutrient for the survival and growth of many organisms. In order to survive, iron uptake from the environment must be strictly regulated and maintained to avoid iron toxicity. The ferric uptake regulator protein (Fur) regulates genes involved in iron homeostasis in many bacteria, including phytopathogens. However, to date, the role played by Fur in the biology of Pectobacterium carotovorum subsp. brasiliense (Pcb1692), an important pathogen of potatoes, has not yet been studied. To this end, we used the lambda recombineering method to generate a fur mutant strain of Pcb1692 and assessed the virulence and fitness of the mutant strain. The results showed that production of siderophores in Pcb1692Δfur increased compared to the Pcb1692 wild-type and the complemented strain Pcb1692Δfur-pfur. However, production of N-acyl homoserine lactone (AHLs), biofilm formation, exopolysaccharide (EPS) production, virulence on potato tubers and swimming motility, were all significantly decreased in Pcb1692Δfur compared to the wild-type and complemented Pcb1692Δfur-pfur strains. The Pcb1692Δfur mutant also demonstrated significant sensitivity to oxidative stress when exposed to H2O2. Consistent with phenotypic results, qRT-PCR results demonstrated that Fur down-regulates genes which encode proteins associated with: iron uptake (HasA-extracellular heme-binding protein and Ferrodoxin-AED-0004132), stress response (SodC-superoxide dismutase), plant cell wall degrading enzymes (PrtA and CelV) and motility (FlhC and MotA). We conclude that the ferric uptake regulator protein (Fur) of Pcb1692 regulates traits that are important to host-pathogens interactions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28545065</pmid><doi>10.1371/journal.pone.0177647</doi><orcidid>https://orcid.org/0000-0002-7109-242X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-05, Vol.12 (5), p.e0177647-e0177647
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1899788842
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects 4-Butyrolactone - analogs & derivatives
4-Butyrolactone - metabolism
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Biochemistry
Biofilms
Biofilms - growth & development
Biology and Life Sciences
Biotechnology
Cell walls
Down-Regulation
E coli
Enterobacteriaceae
Enzymes
Fitness
Genes
Heme
Homeostasis
Host-Pathogen Interactions
Hydrogen peroxide
Hydrogen Peroxide - toxicity
Iron
Iron - metabolism
Medicine and Health Sciences
Microbiology
Motility
Mutagenesis
N-Acyl homoserine lactone
Oxidative stress
Oxidative Stress - drug effects
Pathogenesis
Pathogenic bacteria
Pathogenicity
Pathogens
Pectobacterium carotovorum - genetics
Pectobacterium carotovorum - metabolism
Pectobacterium carotovorum - pathogenicity
Physical fitness
Physiological aspects
Plant pathology
Polymerase chain reaction
Potatoes
Prokaryotes
Proteins
Regulation
Repressor Proteins - genetics
Repressor Proteins - metabolism
Research and Analysis Methods
Siderophores
Siderophores - metabolism
Solanum tuberosum - microbiology
Strain
Superoxide dismutase
Superoxide Dismutase - metabolism
Swimming
Toxicity
Tubers
Virulence
Virulence (Microbiology)
Virulence - genetics
title Influence of the ferric uptake regulator (Fur) protein on pathogenicity in Pectobacterium carotovorum subsp. brasiliense
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A12%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20the%20ferric%20uptake%20regulator%20(Fur)%20protein%20on%20pathogenicity%20in%20Pectobacterium%20carotovorum%20subsp.%20brasiliense&rft.jtitle=PloS%20one&rft.au=Tanui,%20Collins%20Kipngetich&rft.date=2017-05-17&rft.volume=12&rft.issue=5&rft.spage=e0177647&rft.epage=e0177647&rft.pages=e0177647-e0177647&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0177647&rft_dat=%3Cgale_plos_%3EA491887527%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899788842&rft_id=info:pmid/28545065&rft_galeid=A491887527&rft_doaj_id=oai_doaj_org_article_aecc9ba8354f4d879219ffa836f562a1&rfr_iscdi=true