A tailored mouse model of CLN2 disease: A nonsense mutant for testing personalized therapies

The Neuronal Ceroid Lipofuscinoses (NCLs), also known as Batten disease, result from mutations in over a dozen genes. Although, adults are susceptible, the NCLs are frequently classified as pediatric neurodegenerative diseases due to their greater pediatric prevalence. Initial clinical presentation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-05, Vol.12 (5), p.e0176526-e0176526
Hauptverfasser: Geraets, Ryan D, Langin, Logan M, Cain, Jacob T, Parker, Camille M, Beraldi, Rosanna, Kovacs, Attila D, Weimer, Jill M, Pearce, David A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0176526
container_issue 5
container_start_page e0176526
container_title PloS one
container_volume 12
creator Geraets, Ryan D
Langin, Logan M
Cain, Jacob T
Parker, Camille M
Beraldi, Rosanna
Kovacs, Attila D
Weimer, Jill M
Pearce, David A
description The Neuronal Ceroid Lipofuscinoses (NCLs), also known as Batten disease, result from mutations in over a dozen genes. Although, adults are susceptible, the NCLs are frequently classified as pediatric neurodegenerative diseases due to their greater pediatric prevalence. Initial clinical presentation usually consists of either seizures or retinopathy but develops to encompass both in conjunction with declining motor and cognitive function. The NCLs result in premature death due to the absence of curative therapies. Nevertheless, preclinical and clinical trials exist for various therapies. However, the genotypes of NCL animal models determine which therapeutic approaches can be assessed. Mutations of the CLN2 gene encoding a soluble lysosomal enzyme, tripeptidyl peptidase 1 (TPP1), cause late infantile NCL/CLN2 disease. The genotype of the original mouse model of CLN2 disease, Cln2-/-, excludes mutation guided therapies like antisense oligonucleotides and nonsense suppression. Therefore, the purpose of this study was to develop a model of CLN2 disease that allows for the assessment of all therapeutic approaches. Nonsense mutations in CLN2 disease are frequent, the most common being CLN2R208X. Thus, we created a mouse model that carries a mutation equivalent to the human p.R208X mutation. Molecular assessment of Cln2R207X/R207X tissues determined significant reduction in Cln2 transcript abundance and TPP1 enzyme activity. This reduction leads to the development of neurological impairment (e.g. tremors) and neuropathology (e.g. astrocytosis). Collectively, these assessments indicate that the Cln2R207X/R207X mouse is a valid CLN2 disease model which can be used for the preclinical evaluation of all therapeutic approaches including mutation guided therapies.
doi_str_mv 10.1371/journal.pone.0176526
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1894812043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A491016983</galeid><doaj_id>oai_doaj_org_article_f34a5113df834253a0b39fab17e9eda5</doaj_id><sourcerecordid>A491016983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-b36cf397319a75b0308a03c3c5083f44f37165c47589ef0cc62b230beb19880c3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEmTtIkXwjD4MTC44NeVENL0ZCZDpxmTVNRfb7rTXaayF1JI2-R53-ScnJNljzGaY1LhVzvX-06184PrYI5wVbKivJOdY0GKWVkgcvfk-yx7EMIOIUZ4Wd7PzgpOS5p-z7Pvizwq2zoPTb53fYA0NtDmzuTL9ccib2wAFeB1vsg71wXoBqKPqou5cT6PEKLtNvkBfHDpNPZP8olb8OpgITzM7hnVBng0vi-yr-_efll-mK0v36-Wi_VMl0URZzUptSGiIlioitWIIK4Q0UQzxImh1KRwS6ZpxbgAg3RS1QVBNdRYcI40ucieHn0PrQtyTEyQmAvKcYEoScTqSDRO7eTB273yv6VTVl5NOL-RykerW5CGUMUwJo3hhBaMKFQTYVSNKxDQKJa83oy79fUeGg1d9KqdmE5XOruVG_dTMooJYiIZvBgNvPvRpwzKvQ0a2lZ1kK7g6twCV1VFE_rsH_T26EZqo1IAtjMu7asHU7lITgiXgg_U_BYqPQ3srU5VZGyanwheTgSJifArblQfglx9_vT_7OW3Kfv8hN2CauM2uLaPNlXYFKRHUHsXggdzk2SM5NAE19mQQxPIsQmS7MnpBd2Irque_AW95wA4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1894812043</pqid></control><display><type>article</type><title>A tailored mouse model of CLN2 disease: A nonsense mutant for testing personalized therapies</title><source>Open Access: PubMed Central</source><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Directory of Open Access Journals</source><source>Public Library of Science</source><source>EZB Electronic Journals Library</source><creator>Geraets, Ryan D ; Langin, Logan M ; Cain, Jacob T ; Parker, Camille M ; Beraldi, Rosanna ; Kovacs, Attila D ; Weimer, Jill M ; Pearce, David A</creator><contributor>Langmann, Thomas</contributor><creatorcontrib>Geraets, Ryan D ; Langin, Logan M ; Cain, Jacob T ; Parker, Camille M ; Beraldi, Rosanna ; Kovacs, Attila D ; Weimer, Jill M ; Pearce, David A ; Langmann, Thomas</creatorcontrib><description>The Neuronal Ceroid Lipofuscinoses (NCLs), also known as Batten disease, result from mutations in over a dozen genes. Although, adults are susceptible, the NCLs are frequently classified as pediatric neurodegenerative diseases due to their greater pediatric prevalence. Initial clinical presentation usually consists of either seizures or retinopathy but develops to encompass both in conjunction with declining motor and cognitive function. The NCLs result in premature death due to the absence of curative therapies. Nevertheless, preclinical and clinical trials exist for various therapies. However, the genotypes of NCL animal models determine which therapeutic approaches can be assessed. Mutations of the CLN2 gene encoding a soluble lysosomal enzyme, tripeptidyl peptidase 1 (TPP1), cause late infantile NCL/CLN2 disease. The genotype of the original mouse model of CLN2 disease, Cln2-/-, excludes mutation guided therapies like antisense oligonucleotides and nonsense suppression. Therefore, the purpose of this study was to develop a model of CLN2 disease that allows for the assessment of all therapeutic approaches. Nonsense mutations in CLN2 disease are frequent, the most common being CLN2R208X. Thus, we created a mouse model that carries a mutation equivalent to the human p.R208X mutation. Molecular assessment of Cln2R207X/R207X tissues determined significant reduction in Cln2 transcript abundance and TPP1 enzyme activity. This reduction leads to the development of neurological impairment (e.g. tremors) and neuropathology (e.g. astrocytosis). Collectively, these assessments indicate that the Cln2R207X/R207X mouse is a valid CLN2 disease model which can be used for the preclinical evaluation of all therapeutic approaches including mutation guided therapies.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0176526</identifier><identifier>PMID: 28464005</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Age ; Amino acid sequence ; Aminoglycoside antibiotics ; Aminoglycosides ; Aminopeptidases - genetics ; Animal models ; Animals ; Antisense oligonucleotides ; Assaying ; Attenuation ; Behavior, Animal ; Biology and Life Sciences ; Brain ; Brain - pathology ; Brain research ; Care and treatment ; Central nervous system ; Cerebellum ; Chains (polymeric) ; Children ; Clinical trials ; CLN2 protein ; Codon, Nonsense - genetics ; Codon, Nonsense - physiology ; Cognitive ability ; Colonies ; Cortex (motor) ; Death ; Decay ; Diagnosis ; Dipeptidyl-Peptidases and Tripeptidyl-Peptidases - genetics ; Disease ; Disease Models, Animal ; Drugs ; Enzymatic activity ; Enzyme activity ; Enzymes ; Epilepsy ; Falls ; Gene mutation ; Genes ; Genetic aspects ; Genomics ; Genotypes ; Gliosis - pathology ; Hippocampus ; Immune system ; In vivo methods and tests ; LSD ; Lysergic acid diethylamide ; Male ; Medical research ; Medicine ; Membrane proteins ; Mice ; Mice, Knockout ; Mortality ; Mucopolysaccharides ; Mutation ; Nervous system ; Neurodegeneration ; Neurodegenerative diseases ; Neuronal ceroid lipofuscinosis ; Neuronal Ceroid-Lipofuscinoses - genetics ; Neuronal Ceroid-Lipofuscinoses - pathology ; Neuronal Ceroid-Lipofuscinoses - therapy ; Neuronal-glial interactions ; Nucleic acids ; Pathology ; Physiological effects ; Polymerase chain reaction ; Proteins ; Protocol (computers) ; Reduction ; Research and Analysis Methods ; Serine Proteases - genetics ; Stem cells ; Stop codon ; Storage ; Substrates ; Transcription</subject><ispartof>PloS one, 2017-05, Vol.12 (5), p.e0176526-e0176526</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Geraets et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Geraets et al 2017 Geraets et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-b36cf397319a75b0308a03c3c5083f44f37165c47589ef0cc62b230beb19880c3</citedby><cites>FETCH-LOGICAL-c622t-b36cf397319a75b0308a03c3c5083f44f37165c47589ef0cc62b230beb19880c3</cites><orcidid>0000-0002-8493-8543 ; 0000-0003-0230-9979 ; 0000-0003-3917-2099 ; 0000-0002-4320-4471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413059/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413059/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28464005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Langmann, Thomas</contributor><creatorcontrib>Geraets, Ryan D</creatorcontrib><creatorcontrib>Langin, Logan M</creatorcontrib><creatorcontrib>Cain, Jacob T</creatorcontrib><creatorcontrib>Parker, Camille M</creatorcontrib><creatorcontrib>Beraldi, Rosanna</creatorcontrib><creatorcontrib>Kovacs, Attila D</creatorcontrib><creatorcontrib>Weimer, Jill M</creatorcontrib><creatorcontrib>Pearce, David A</creatorcontrib><title>A tailored mouse model of CLN2 disease: A nonsense mutant for testing personalized therapies</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The Neuronal Ceroid Lipofuscinoses (NCLs), also known as Batten disease, result from mutations in over a dozen genes. Although, adults are susceptible, the NCLs are frequently classified as pediatric neurodegenerative diseases due to their greater pediatric prevalence. Initial clinical presentation usually consists of either seizures or retinopathy but develops to encompass both in conjunction with declining motor and cognitive function. The NCLs result in premature death due to the absence of curative therapies. Nevertheless, preclinical and clinical trials exist for various therapies. However, the genotypes of NCL animal models determine which therapeutic approaches can be assessed. Mutations of the CLN2 gene encoding a soluble lysosomal enzyme, tripeptidyl peptidase 1 (TPP1), cause late infantile NCL/CLN2 disease. The genotype of the original mouse model of CLN2 disease, Cln2-/-, excludes mutation guided therapies like antisense oligonucleotides and nonsense suppression. Therefore, the purpose of this study was to develop a model of CLN2 disease that allows for the assessment of all therapeutic approaches. Nonsense mutations in CLN2 disease are frequent, the most common being CLN2R208X. Thus, we created a mouse model that carries a mutation equivalent to the human p.R208X mutation. Molecular assessment of Cln2R207X/R207X tissues determined significant reduction in Cln2 transcript abundance and TPP1 enzyme activity. This reduction leads to the development of neurological impairment (e.g. tremors) and neuropathology (e.g. astrocytosis). Collectively, these assessments indicate that the Cln2R207X/R207X mouse is a valid CLN2 disease model which can be used for the preclinical evaluation of all therapeutic approaches including mutation guided therapies.</description><subject>Age</subject><subject>Amino acid sequence</subject><subject>Aminoglycoside antibiotics</subject><subject>Aminoglycosides</subject><subject>Aminopeptidases - genetics</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antisense oligonucleotides</subject><subject>Assaying</subject><subject>Attenuation</subject><subject>Behavior, Animal</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Brain - pathology</subject><subject>Brain research</subject><subject>Care and treatment</subject><subject>Central nervous system</subject><subject>Cerebellum</subject><subject>Chains (polymeric)</subject><subject>Children</subject><subject>Clinical trials</subject><subject>CLN2 protein</subject><subject>Codon, Nonsense - genetics</subject><subject>Codon, Nonsense - physiology</subject><subject>Cognitive ability</subject><subject>Colonies</subject><subject>Cortex (motor)</subject><subject>Death</subject><subject>Decay</subject><subject>Diagnosis</subject><subject>Dipeptidyl-Peptidases and Tripeptidyl-Peptidases - genetics</subject><subject>Disease</subject><subject>Disease Models, Animal</subject><subject>Drugs</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Enzymes</subject><subject>Epilepsy</subject><subject>Falls</subject><subject>Gene mutation</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Genotypes</subject><subject>Gliosis - pathology</subject><subject>Hippocampus</subject><subject>Immune system</subject><subject>In vivo methods and tests</subject><subject>LSD</subject><subject>Lysergic acid diethylamide</subject><subject>Male</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Membrane proteins</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mortality</subject><subject>Mucopolysaccharides</subject><subject>Mutation</subject><subject>Nervous system</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neuronal ceroid lipofuscinosis</subject><subject>Neuronal Ceroid-Lipofuscinoses - genetics</subject><subject>Neuronal Ceroid-Lipofuscinoses - pathology</subject><subject>Neuronal Ceroid-Lipofuscinoses - therapy</subject><subject>Neuronal-glial interactions</subject><subject>Nucleic acids</subject><subject>Pathology</subject><subject>Physiological effects</subject><subject>Polymerase chain reaction</subject><subject>Proteins</subject><subject>Protocol (computers)</subject><subject>Reduction</subject><subject>Research and Analysis Methods</subject><subject>Serine Proteases - genetics</subject><subject>Stem cells</subject><subject>Stop codon</subject><subject>Storage</subject><subject>Substrates</subject><subject>Transcription</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEmTtIkXwjD4MTC44NeVENL0ZCZDpxmTVNRfb7rTXaayF1JI2-R53-ScnJNljzGaY1LhVzvX-06184PrYI5wVbKivJOdY0GKWVkgcvfk-yx7EMIOIUZ4Wd7PzgpOS5p-z7Pvizwq2zoPTb53fYA0NtDmzuTL9ccib2wAFeB1vsg71wXoBqKPqou5cT6PEKLtNvkBfHDpNPZP8olb8OpgITzM7hnVBng0vi-yr-_efll-mK0v36-Wi_VMl0URZzUptSGiIlioitWIIK4Q0UQzxImh1KRwS6ZpxbgAg3RS1QVBNdRYcI40ucieHn0PrQtyTEyQmAvKcYEoScTqSDRO7eTB273yv6VTVl5NOL-RykerW5CGUMUwJo3hhBaMKFQTYVSNKxDQKJa83oy79fUeGg1d9KqdmE5XOruVG_dTMooJYiIZvBgNvPvRpwzKvQ0a2lZ1kK7g6twCV1VFE_rsH_T26EZqo1IAtjMu7asHU7lITgiXgg_U_BYqPQ3srU5VZGyanwheTgSJifArblQfglx9_vT_7OW3Kfv8hN2CauM2uLaPNlXYFKRHUHsXggdzk2SM5NAE19mQQxPIsQmS7MnpBd2Irque_AW95wA4</recordid><startdate>20170502</startdate><enddate>20170502</enddate><creator>Geraets, Ryan D</creator><creator>Langin, Logan M</creator><creator>Cain, Jacob T</creator><creator>Parker, Camille M</creator><creator>Beraldi, Rosanna</creator><creator>Kovacs, Attila D</creator><creator>Weimer, Jill M</creator><creator>Pearce, David A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8493-8543</orcidid><orcidid>https://orcid.org/0000-0003-0230-9979</orcidid><orcidid>https://orcid.org/0000-0003-3917-2099</orcidid><orcidid>https://orcid.org/0000-0002-4320-4471</orcidid></search><sort><creationdate>20170502</creationdate><title>A tailored mouse model of CLN2 disease: A nonsense mutant for testing personalized therapies</title><author>Geraets, Ryan D ; Langin, Logan M ; Cain, Jacob T ; Parker, Camille M ; Beraldi, Rosanna ; Kovacs, Attila D ; Weimer, Jill M ; Pearce, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-b36cf397319a75b0308a03c3c5083f44f37165c47589ef0cc62b230beb19880c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Age</topic><topic>Amino acid sequence</topic><topic>Aminoglycoside antibiotics</topic><topic>Aminoglycosides</topic><topic>Aminopeptidases - genetics</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antisense oligonucleotides</topic><topic>Assaying</topic><topic>Attenuation</topic><topic>Behavior, Animal</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Brain - pathology</topic><topic>Brain research</topic><topic>Care and treatment</topic><topic>Central nervous system</topic><topic>Cerebellum</topic><topic>Chains (polymeric)</topic><topic>Children</topic><topic>Clinical trials</topic><topic>CLN2 protein</topic><topic>Codon, Nonsense - genetics</topic><topic>Codon, Nonsense - physiology</topic><topic>Cognitive ability</topic><topic>Colonies</topic><topic>Cortex (motor)</topic><topic>Death</topic><topic>Decay</topic><topic>Diagnosis</topic><topic>Dipeptidyl-Peptidases and Tripeptidyl-Peptidases - genetics</topic><topic>Disease</topic><topic>Disease Models, Animal</topic><topic>Drugs</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Enzymes</topic><topic>Epilepsy</topic><topic>Falls</topic><topic>Gene mutation</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Genotypes</topic><topic>Gliosis - pathology</topic><topic>Hippocampus</topic><topic>Immune system</topic><topic>In vivo methods and tests</topic><topic>LSD</topic><topic>Lysergic acid diethylamide</topic><topic>Male</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Membrane proteins</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mortality</topic><topic>Mucopolysaccharides</topic><topic>Mutation</topic><topic>Nervous system</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neuronal ceroid lipofuscinosis</topic><topic>Neuronal Ceroid-Lipofuscinoses - genetics</topic><topic>Neuronal Ceroid-Lipofuscinoses - pathology</topic><topic>Neuronal Ceroid-Lipofuscinoses - therapy</topic><topic>Neuronal-glial interactions</topic><topic>Nucleic acids</topic><topic>Pathology</topic><topic>Physiological effects</topic><topic>Polymerase chain reaction</topic><topic>Proteins</topic><topic>Protocol (computers)</topic><topic>Reduction</topic><topic>Research and Analysis Methods</topic><topic>Serine Proteases - genetics</topic><topic>Stem cells</topic><topic>Stop codon</topic><topic>Storage</topic><topic>Substrates</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geraets, Ryan D</creatorcontrib><creatorcontrib>Langin, Logan M</creatorcontrib><creatorcontrib>Cain, Jacob T</creatorcontrib><creatorcontrib>Parker, Camille M</creatorcontrib><creatorcontrib>Beraldi, Rosanna</creatorcontrib><creatorcontrib>Kovacs, Attila D</creatorcontrib><creatorcontrib>Weimer, Jill M</creatorcontrib><creatorcontrib>Pearce, David A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Source (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geraets, Ryan D</au><au>Langin, Logan M</au><au>Cain, Jacob T</au><au>Parker, Camille M</au><au>Beraldi, Rosanna</au><au>Kovacs, Attila D</au><au>Weimer, Jill M</au><au>Pearce, David A</au><au>Langmann, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A tailored mouse model of CLN2 disease: A nonsense mutant for testing personalized therapies</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-05-02</date><risdate>2017</risdate><volume>12</volume><issue>5</issue><spage>e0176526</spage><epage>e0176526</epage><pages>e0176526-e0176526</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The Neuronal Ceroid Lipofuscinoses (NCLs), also known as Batten disease, result from mutations in over a dozen genes. Although, adults are susceptible, the NCLs are frequently classified as pediatric neurodegenerative diseases due to their greater pediatric prevalence. Initial clinical presentation usually consists of either seizures or retinopathy but develops to encompass both in conjunction with declining motor and cognitive function. The NCLs result in premature death due to the absence of curative therapies. Nevertheless, preclinical and clinical trials exist for various therapies. However, the genotypes of NCL animal models determine which therapeutic approaches can be assessed. Mutations of the CLN2 gene encoding a soluble lysosomal enzyme, tripeptidyl peptidase 1 (TPP1), cause late infantile NCL/CLN2 disease. The genotype of the original mouse model of CLN2 disease, Cln2-/-, excludes mutation guided therapies like antisense oligonucleotides and nonsense suppression. Therefore, the purpose of this study was to develop a model of CLN2 disease that allows for the assessment of all therapeutic approaches. Nonsense mutations in CLN2 disease are frequent, the most common being CLN2R208X. Thus, we created a mouse model that carries a mutation equivalent to the human p.R208X mutation. Molecular assessment of Cln2R207X/R207X tissues determined significant reduction in Cln2 transcript abundance and TPP1 enzyme activity. This reduction leads to the development of neurological impairment (e.g. tremors) and neuropathology (e.g. astrocytosis). Collectively, these assessments indicate that the Cln2R207X/R207X mouse is a valid CLN2 disease model which can be used for the preclinical evaluation of all therapeutic approaches including mutation guided therapies.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28464005</pmid><doi>10.1371/journal.pone.0176526</doi><tpages>e0176526</tpages><orcidid>https://orcid.org/0000-0002-8493-8543</orcidid><orcidid>https://orcid.org/0000-0003-0230-9979</orcidid><orcidid>https://orcid.org/0000-0003-3917-2099</orcidid><orcidid>https://orcid.org/0000-0002-4320-4471</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-05, Vol.12 (5), p.e0176526-e0176526
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1894812043
source Open Access: PubMed Central; MEDLINE; Full-Text Journals in Chemistry (Open access); Directory of Open Access Journals; Public Library of Science; EZB Electronic Journals Library
subjects Age
Amino acid sequence
Aminoglycoside antibiotics
Aminoglycosides
Aminopeptidases - genetics
Animal models
Animals
Antisense oligonucleotides
Assaying
Attenuation
Behavior, Animal
Biology and Life Sciences
Brain
Brain - pathology
Brain research
Care and treatment
Central nervous system
Cerebellum
Chains (polymeric)
Children
Clinical trials
CLN2 protein
Codon, Nonsense - genetics
Codon, Nonsense - physiology
Cognitive ability
Colonies
Cortex (motor)
Death
Decay
Diagnosis
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases - genetics
Disease
Disease Models, Animal
Drugs
Enzymatic activity
Enzyme activity
Enzymes
Epilepsy
Falls
Gene mutation
Genes
Genetic aspects
Genomics
Genotypes
Gliosis - pathology
Hippocampus
Immune system
In vivo methods and tests
LSD
Lysergic acid diethylamide
Male
Medical research
Medicine
Membrane proteins
Mice
Mice, Knockout
Mortality
Mucopolysaccharides
Mutation
Nervous system
Neurodegeneration
Neurodegenerative diseases
Neuronal ceroid lipofuscinosis
Neuronal Ceroid-Lipofuscinoses - genetics
Neuronal Ceroid-Lipofuscinoses - pathology
Neuronal Ceroid-Lipofuscinoses - therapy
Neuronal-glial interactions
Nucleic acids
Pathology
Physiological effects
Polymerase chain reaction
Proteins
Protocol (computers)
Reduction
Research and Analysis Methods
Serine Proteases - genetics
Stem cells
Stop codon
Storage
Substrates
Transcription
title A tailored mouse model of CLN2 disease: A nonsense mutant for testing personalized therapies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T17%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20tailored%20mouse%20model%20of%20CLN2%20disease:%20A%20nonsense%20mutant%20for%20testing%20personalized%20therapies&rft.jtitle=PloS%20one&rft.au=Geraets,%20Ryan%20D&rft.date=2017-05-02&rft.volume=12&rft.issue=5&rft.spage=e0176526&rft.epage=e0176526&rft.pages=e0176526-e0176526&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0176526&rft_dat=%3Cgale_plos_%3EA491016983%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1894812043&rft_id=info:pmid/28464005&rft_galeid=A491016983&rft_doaj_id=oai_doaj_org_article_f34a5113df834253a0b39fab17e9eda5&rfr_iscdi=true