InMAP: A model for air pollution interventions
Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. Here, we present InMAP (Intervention Model for Air Pollution), whic...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-04, Vol.12 (4), p.e0176131-e0176131 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0176131 |
---|---|
container_issue | 4 |
container_start_page | e0176131 |
container_title | PloS one |
container_volume | 12 |
creator | Tessum, Christopher W Hill, Jason D Marshall, Julian D |
description | Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations-the air pollution outcome generally causing the largest monetized health damages-attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons run here, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of -17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license. |
doi_str_mv | 10.1371/journal.pone.0176131 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1889736602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5f83d1bb21d1415f94c0c8fea711ca6d</doaj_id><sourcerecordid>1889736602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-e2f38cba17b0d797ac1f1dfc3284448167a5c43949f87b1141dc27e7096b77333</originalsourceid><addsrcrecordid>eNptUk1vFCEYJsbGtqv_wOjEXrzsyjsMXz2YbBq1m7TRg54Jw0DLhoUVZpr4751xp01regJeng8e8iD0FvAKCIdP2zTkqMNqn6JdYeAMCLxAJyBJvWQ1Ji8f7Y_RaSlbjCkRjL1Cx7VoaoIbeYJWm3i9_nFeratd6myoXMqV9rnapxCG3qdY-djbfGfjdCiv0ZHTodg387pAv75--Xlxubz6_m1zsb5aGkpJv7S1I8K0GniLOy65NuCgc4aMxk0jgHFNTUNkI53gLUADnam55ViylnNCyAK9P-juQypqjloUCCE5YQzXI2JzQHRJb9U--53Of1TSXv0bpHyjdO69CVZRJ0gHbVtDNzpRJxuDjXBWcwCjWTdqfZ7dhnZnOzOGzTo8EX16E_2tukl3ihLJMWWjwIeDQCq9V8X43ppbk2K0pldAaD1GHEEfZ5ecfg-29Grni7Eh6GjTMIWTgIWcEi7Q2X_Q57-gOaBMTqVk6x5eDFhNHblnqakjau7ISHv3OO0D6b4U5C8ql7e3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1889736602</pqid></control><display><type>article</type><title>InMAP: A model for air pollution interventions</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tessum, Christopher W ; Hill, Jason D ; Marshall, Julian D</creator><contributor>Añel, Juan A.</contributor><creatorcontrib>Tessum, Christopher W ; Hill, Jason D ; Marshall, Julian D ; Univ. of Minnesota, Minneapolis, MN (United States) ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF) ; Añel, Juan A.</creatorcontrib><description>Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations-the air pollution outcome generally causing the largest monetized health damages-attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons run here, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of -17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0176131</identifier><identifier>PMID: 28423049</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Air Pollutants - analysis ; Air pollution ; Air Pollution - analysis ; Air Pollution - prevention & control ; Air quality ; Air quality management ; Air quality models ; Airborne particulates ; Atmosphere ; Atmospheric boundary layer ; Atmospheric pollution ; Atmospheric pollution emission reduction ; Computation ; Computer applications ; Computer Simulation ; Damage ; Earth Sciences ; Ecology and Environmental Sciences ; Emission standards ; Emissions ; Emissions control ; Engineering and Technology ; Environmental engineering ; Environmental impact ; Environmental justice ; Environmental Monitoring - statistics & numerical data ; ENVIRONMENTAL SCIENCES ; Health ; Humans ; Internet ; Models, Statistical ; Outdoor air quality ; Particulate matter ; Particulate Matter - analysis ; Particulate matter emissions ; Physical Sciences ; Pollution ; Pollution abatement ; Quality management ; Research and Analysis Methods ; Resource management ; Software ; Spatial resolution ; Time Factors ; Vehicle Emissions - analysis ; Vehicle Emissions - prevention & control</subject><ispartof>PloS one, 2017-04, Vol.12 (4), p.e0176131-e0176131</ispartof><rights>2017 Tessum et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Tessum et al 2017 Tessum et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-e2f38cba17b0d797ac1f1dfc3284448167a5c43949f87b1141dc27e7096b77333</citedby><cites>FETCH-LOGICAL-c553t-e2f38cba17b0d797ac1f1dfc3284448167a5c43949f87b1141dc27e7096b77333</cites><orcidid>0000-0002-8864-7436 ; 0000000288647436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397056/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397056/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28423049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1352114$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Añel, Juan A.</contributor><creatorcontrib>Tessum, Christopher W</creatorcontrib><creatorcontrib>Hill, Jason D</creatorcontrib><creatorcontrib>Marshall, Julian D</creatorcontrib><creatorcontrib>Univ. of Minnesota, Minneapolis, MN (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><title>InMAP: A model for air pollution interventions</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations-the air pollution outcome generally causing the largest monetized health damages-attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons run here, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of -17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license.</description><subject>Air Pollutants - analysis</subject><subject>Air pollution</subject><subject>Air Pollution - analysis</subject><subject>Air Pollution - prevention & control</subject><subject>Air quality</subject><subject>Air quality management</subject><subject>Air quality models</subject><subject>Airborne particulates</subject><subject>Atmosphere</subject><subject>Atmospheric boundary layer</subject><subject>Atmospheric pollution</subject><subject>Atmospheric pollution emission reduction</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Damage</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Emission standards</subject><subject>Emissions</subject><subject>Emissions control</subject><subject>Engineering and Technology</subject><subject>Environmental engineering</subject><subject>Environmental impact</subject><subject>Environmental justice</subject><subject>Environmental Monitoring - statistics & numerical data</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Health</subject><subject>Humans</subject><subject>Internet</subject><subject>Models, Statistical</subject><subject>Outdoor air quality</subject><subject>Particulate matter</subject><subject>Particulate Matter - analysis</subject><subject>Particulate matter emissions</subject><subject>Physical Sciences</subject><subject>Pollution</subject><subject>Pollution abatement</subject><subject>Quality management</subject><subject>Research and Analysis Methods</subject><subject>Resource management</subject><subject>Software</subject><subject>Spatial resolution</subject><subject>Time Factors</subject><subject>Vehicle Emissions - analysis</subject><subject>Vehicle Emissions - prevention & control</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1vFCEYJsbGtqv_wOjEXrzsyjsMXz2YbBq1m7TRg54Jw0DLhoUVZpr4751xp01regJeng8e8iD0FvAKCIdP2zTkqMNqn6JdYeAMCLxAJyBJvWQ1Ji8f7Y_RaSlbjCkRjL1Cx7VoaoIbeYJWm3i9_nFeratd6myoXMqV9rnapxCG3qdY-djbfGfjdCiv0ZHTodg387pAv75--Xlxubz6_m1zsb5aGkpJv7S1I8K0GniLOy65NuCgc4aMxk0jgHFNTUNkI53gLUADnam55ViylnNCyAK9P-juQypqjloUCCE5YQzXI2JzQHRJb9U--53Of1TSXv0bpHyjdO69CVZRJ0gHbVtDNzpRJxuDjXBWcwCjWTdqfZ7dhnZnOzOGzTo8EX16E_2tukl3ihLJMWWjwIeDQCq9V8X43ppbk2K0pldAaD1GHEEfZ5ecfg-29Grni7Eh6GjTMIWTgIWcEi7Q2X_Q57-gOaBMTqVk6x5eDFhNHblnqakjau7ISHv3OO0D6b4U5C8ql7e3</recordid><startdate>20170419</startdate><enddate>20170419</enddate><creator>Tessum, Christopher W</creator><creator>Hill, Jason D</creator><creator>Marshall, Julian D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8864-7436</orcidid><orcidid>https://orcid.org/0000000288647436</orcidid></search><sort><creationdate>20170419</creationdate><title>InMAP: A model for air pollution interventions</title><author>Tessum, Christopher W ; Hill, Jason D ; Marshall, Julian D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-e2f38cba17b0d797ac1f1dfc3284448167a5c43949f87b1141dc27e7096b77333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air Pollutants - analysis</topic><topic>Air pollution</topic><topic>Air Pollution - analysis</topic><topic>Air Pollution - prevention & control</topic><topic>Air quality</topic><topic>Air quality management</topic><topic>Air quality models</topic><topic>Airborne particulates</topic><topic>Atmosphere</topic><topic>Atmospheric boundary layer</topic><topic>Atmospheric pollution</topic><topic>Atmospheric pollution emission reduction</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Damage</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Emission standards</topic><topic>Emissions</topic><topic>Emissions control</topic><topic>Engineering and Technology</topic><topic>Environmental engineering</topic><topic>Environmental impact</topic><topic>Environmental justice</topic><topic>Environmental Monitoring - statistics & numerical data</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Health</topic><topic>Humans</topic><topic>Internet</topic><topic>Models, Statistical</topic><topic>Outdoor air quality</topic><topic>Particulate matter</topic><topic>Particulate Matter - analysis</topic><topic>Particulate matter emissions</topic><topic>Physical Sciences</topic><topic>Pollution</topic><topic>Pollution abatement</topic><topic>Quality management</topic><topic>Research and Analysis Methods</topic><topic>Resource management</topic><topic>Software</topic><topic>Spatial resolution</topic><topic>Time Factors</topic><topic>Vehicle Emissions - analysis</topic><topic>Vehicle Emissions - prevention & control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tessum, Christopher W</creatorcontrib><creatorcontrib>Hill, Jason D</creatorcontrib><creatorcontrib>Marshall, Julian D</creatorcontrib><creatorcontrib>Univ. of Minnesota, Minneapolis, MN (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tessum, Christopher W</au><au>Hill, Jason D</au><au>Marshall, Julian D</au><au>Añel, Juan A.</au><aucorp>Univ. of Minnesota, Minneapolis, MN (United States)</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>InMAP: A model for air pollution interventions</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-04-19</date><risdate>2017</risdate><volume>12</volume><issue>4</issue><spage>e0176131</spage><epage>e0176131</epage><pages>e0176131-e0176131</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations-the air pollution outcome generally causing the largest monetized health damages-attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons run here, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of -17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28423049</pmid><doi>10.1371/journal.pone.0176131</doi><orcidid>https://orcid.org/0000-0002-8864-7436</orcidid><orcidid>https://orcid.org/0000000288647436</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-04, Vol.12 (4), p.e0176131-e0176131 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1889736602 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Air Pollutants - analysis Air pollution Air Pollution - analysis Air Pollution - prevention & control Air quality Air quality management Air quality models Airborne particulates Atmosphere Atmospheric boundary layer Atmospheric pollution Atmospheric pollution emission reduction Computation Computer applications Computer Simulation Damage Earth Sciences Ecology and Environmental Sciences Emission standards Emissions Emissions control Engineering and Technology Environmental engineering Environmental impact Environmental justice Environmental Monitoring - statistics & numerical data ENVIRONMENTAL SCIENCES Health Humans Internet Models, Statistical Outdoor air quality Particulate matter Particulate Matter - analysis Particulate matter emissions Physical Sciences Pollution Pollution abatement Quality management Research and Analysis Methods Resource management Software Spatial resolution Time Factors Vehicle Emissions - analysis Vehicle Emissions - prevention & control |
title | InMAP: A model for air pollution interventions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=InMAP:%20A%20model%20for%20air%20pollution%20interventions&rft.jtitle=PloS%20one&rft.au=Tessum,%20Christopher%20W&rft.aucorp=Univ.%20of%20Minnesota,%20Minneapolis,%20MN%20(United%20States)&rft.date=2017-04-19&rft.volume=12&rft.issue=4&rft.spage=e0176131&rft.epage=e0176131&rft.pages=e0176131-e0176131&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0176131&rft_dat=%3Cproquest_plos_%3E1889736602%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1889736602&rft_id=info:pmid/28423049&rft_doaj_id=oai_doaj_org_article_5f83d1bb21d1415f94c0c8fea711ca6d&rfr_iscdi=true |