Apomixis frequency under stress conditions in weeping lovegrass (Eragrostis curvula)
To overcome environmental stress, plants develop physiological responses that are triggered by genetic or epigenetic changes, some of which involve DNA methylation. It has been proposed that apomixis, the formation of asexual seeds without meiosis, occurs through the temporal or spatial deregulation...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-04, Vol.12 (4), p.e0175852-e0175852 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0175852 |
---|---|
container_issue | 4 |
container_start_page | e0175852 |
container_title | PloS one |
container_volume | 12 |
creator | Rodrigo, Juan Manuel Zappacosta, Diego Carlos Selva, Juan Pablo Garbus, Ingrid Albertini, Emidio Echenique, Viviana |
description | To overcome environmental stress, plants develop physiological responses that are triggered by genetic or epigenetic changes, some of which involve DNA methylation. It has been proposed that apomixis, the formation of asexual seeds without meiosis, occurs through the temporal or spatial deregulation of the sexual process mediated by genetic and epigenetic factors influenced by the environment. Here, we explored whether there was a link between the occurrence of apomixis and various factors that generate stress, including drought stress, in vitro culture, and intraspecific hybridization. For this purpose, we monitored the embryo sacs of different weeping lovegrass (Eragrostis curvula [Schrad.] Nees) genotypes after the plants were subjected to these stress conditions. Progeny tests based on molecular markers and genome methylation status were analyzed following the stress treatment. When grown in the greenhouse, the cultivar Tanganyika INTA generated less than 2% of its progeny by sexual reproduction. Plants of this cultivar subjected to different stresses showed an increase of sexual embryo sacs, demonstrating an increased expression of sexuality compared to control plants. Plants of the cv. Tanganyika USDA did not demonstrate the ability to generate sexual embryo sacs under any conditions and is therefore classified as a fully apomictic cultivar. We found that this change in the prevalence of sexuality was correlated with genetic and epigenetic changes analyzed by MSAP and AFLPs profiles. Our results demonstrate that different stress conditions can alter the expression of sexual reproduction in facultative tetraploid apomictic cultivars and when the stress stops the reproductive mode shift back to the apomixis original level. These data together with previous observations allow us to generate a hypothetical model of the regulation of apomixis in weeping lovegrass in which the genetic/s region/s that condition apomixis, is/are affected by ploidy, and is/are subjected to epigenetic control. |
doi_str_mv | 10.1371/journal.pone.0175852 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1889360810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A490063522</galeid><doaj_id>oai_doaj_org_article_8bfd74135852475ba6a37b338656aced</doaj_id><sourcerecordid>A490063522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-87aa5605e8f6bfe6f46790058fdddfc2575e17123dc2977b521f6e383784f20b3</originalsourceid><addsrcrecordid>eNqNkl9rFDEUxQdRbK1-A9EBQdqHXSfJ5M-8CEupulAoaPU1ZDI3symzyZrMrO23N9udlh3pg-QhIfndk5uTk2VvUTFHhKNPN34ITnXzjXcwLxCnguJn2TGqCJ4xXJDnB-uj7FWMN0VBiWDsZXaERYkqVNLj7Hqx8Wt7a2NuAvwewOm7fHANhDz2AWLMtXeN7a13Mbcu_wOwsa7NO7-FNqh0fnoRVBt87JOEHsJ26NTZ6-yFUV2EN-N8kv38cnF9_m12efV1eb64nGlW4X4muFKUFRSEYbUBZkrGq9SkME3TGI0pp4A4wqTRuOK8phgZBkQQLkqDi5qcZO_3upvORzkaEiUSoiKsEKhIxHJPNF7dyE2waxXupFdW3m_40EoVeqs7kKI2DS8R2flYclorpgivSXKMMqWhSVqfx9uGeg2NBtcH1U1EpyfOrmTrt5KSiqaeksDpKBB8sjr2cm2jhq5TDvyw75tziniV0A__oE-_bqRalR5gnfHpXr0TlYsyOckIxThR8yeoNBpY2_S9YGzanxScTQoS08Nt36ohRrn88f3_2atfU_bjAbsC1fWr6LvhPl1TsNyDOgUrBjCPJqNC7sL_4IbchV-O4U9l7w4_6LHoIe3kL49X_tA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1889360810</pqid></control><display><type>article</type><title>Apomixis frequency under stress conditions in weeping lovegrass (Eragrostis curvula)</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Rodrigo, Juan Manuel ; Zappacosta, Diego Carlos ; Selva, Juan Pablo ; Garbus, Ingrid ; Albertini, Emidio ; Echenique, Viviana</creator><contributor>Hörandl, Elvira</contributor><creatorcontrib>Rodrigo, Juan Manuel ; Zappacosta, Diego Carlos ; Selva, Juan Pablo ; Garbus, Ingrid ; Albertini, Emidio ; Echenique, Viviana ; Hörandl, Elvira</creatorcontrib><description>To overcome environmental stress, plants develop physiological responses that are triggered by genetic or epigenetic changes, some of which involve DNA methylation. It has been proposed that apomixis, the formation of asexual seeds without meiosis, occurs through the temporal or spatial deregulation of the sexual process mediated by genetic and epigenetic factors influenced by the environment. Here, we explored whether there was a link between the occurrence of apomixis and various factors that generate stress, including drought stress, in vitro culture, and intraspecific hybridization. For this purpose, we monitored the embryo sacs of different weeping lovegrass (Eragrostis curvula [Schrad.] Nees) genotypes after the plants were subjected to these stress conditions. Progeny tests based on molecular markers and genome methylation status were analyzed following the stress treatment. When grown in the greenhouse, the cultivar Tanganyika INTA generated less than 2% of its progeny by sexual reproduction. Plants of this cultivar subjected to different stresses showed an increase of sexual embryo sacs, demonstrating an increased expression of sexuality compared to control plants. Plants of the cv. Tanganyika USDA did not demonstrate the ability to generate sexual embryo sacs under any conditions and is therefore classified as a fully apomictic cultivar. We found that this change in the prevalence of sexuality was correlated with genetic and epigenetic changes analyzed by MSAP and AFLPs profiles. Our results demonstrate that different stress conditions can alter the expression of sexual reproduction in facultative tetraploid apomictic cultivars and when the stress stops the reproductive mode shift back to the apomixis original level. These data together with previous observations allow us to generate a hypothetical model of the regulation of apomixis in weeping lovegrass in which the genetic/s region/s that condition apomixis, is/are affected by ploidy, and is/are subjected to epigenetic control.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0175852</identifier><identifier>PMID: 28419145</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abnormalities ; Adaptation ; Agriculture ; Agronomy ; Algae ; Analysis ; Apomixis ; Biology and Life Sciences ; Callus ; Cell culture ; Cell fate ; Conferences ; Cues ; Cultivars ; Deoxyribonucleic acid ; Deregulation ; DNA ; DNA Methylation ; Drought ; Droughts ; Ecology and Environmental Sciences ; Embryos ; Environmental conditions ; Environmental stress ; Epigenesis, Genetic ; Epigenetic inheritance ; Epigenetics ; Eragrostis - embryology ; Eragrostis - genetics ; Eragrostis - physiology ; Females ; Fertilization ; Food ; Fracture mechanics ; Fungi ; Gene expression ; Gene Expression Regulation, Plant ; Gene regulation ; Genomes ; Genotype ; Genotypes ; Grasses ; Hybridization ; Hybridization, Genetic ; Incidence ; Irrigation ; Leaves ; Libraries ; Males ; Markers ; Meiosis ; Metal matrix composites ; Methylation ; Moisture content ; Mutation ; Nitrogen ; Physiological aspects ; Physiological responses ; Plant genetics ; Plants ; Ploidies ; Ploidy ; Polyploidy ; Reproduction ; Reproduction (biology) ; Research and Analysis Methods ; Salts ; Seeds - embryology ; Seeds - genetics ; Seeds - physiology ; Sexual reproduction ; Sexuality ; Spores ; Spring (season) ; Stress, Physiological ; Stresses ; Summer ; Tissue culture ; Transposons ; Trends ; Water content ; Water deficit ; Winter</subject><ispartof>PloS one, 2017-04, Vol.12 (4), p.e0175852-e0175852</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Rodrigo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Rodrigo et al 2017 Rodrigo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-87aa5605e8f6bfe6f46790058fdddfc2575e17123dc2977b521f6e383784f20b3</citedby><cites>FETCH-LOGICAL-c692t-87aa5605e8f6bfe6f46790058fdddfc2575e17123dc2977b521f6e383784f20b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5395188/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5395188/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23871,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28419145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hörandl, Elvira</contributor><creatorcontrib>Rodrigo, Juan Manuel</creatorcontrib><creatorcontrib>Zappacosta, Diego Carlos</creatorcontrib><creatorcontrib>Selva, Juan Pablo</creatorcontrib><creatorcontrib>Garbus, Ingrid</creatorcontrib><creatorcontrib>Albertini, Emidio</creatorcontrib><creatorcontrib>Echenique, Viviana</creatorcontrib><title>Apomixis frequency under stress conditions in weeping lovegrass (Eragrostis curvula)</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>To overcome environmental stress, plants develop physiological responses that are triggered by genetic or epigenetic changes, some of which involve DNA methylation. It has been proposed that apomixis, the formation of asexual seeds without meiosis, occurs through the temporal or spatial deregulation of the sexual process mediated by genetic and epigenetic factors influenced by the environment. Here, we explored whether there was a link between the occurrence of apomixis and various factors that generate stress, including drought stress, in vitro culture, and intraspecific hybridization. For this purpose, we monitored the embryo sacs of different weeping lovegrass (Eragrostis curvula [Schrad.] Nees) genotypes after the plants were subjected to these stress conditions. Progeny tests based on molecular markers and genome methylation status were analyzed following the stress treatment. When grown in the greenhouse, the cultivar Tanganyika INTA generated less than 2% of its progeny by sexual reproduction. Plants of this cultivar subjected to different stresses showed an increase of sexual embryo sacs, demonstrating an increased expression of sexuality compared to control plants. Plants of the cv. Tanganyika USDA did not demonstrate the ability to generate sexual embryo sacs under any conditions and is therefore classified as a fully apomictic cultivar. We found that this change in the prevalence of sexuality was correlated with genetic and epigenetic changes analyzed by MSAP and AFLPs profiles. Our results demonstrate that different stress conditions can alter the expression of sexual reproduction in facultative tetraploid apomictic cultivars and when the stress stops the reproductive mode shift back to the apomixis original level. These data together with previous observations allow us to generate a hypothetical model of the regulation of apomixis in weeping lovegrass in which the genetic/s region/s that condition apomixis, is/are affected by ploidy, and is/are subjected to epigenetic control.</description><subject>Abnormalities</subject><subject>Adaptation</subject><subject>Agriculture</subject><subject>Agronomy</subject><subject>Algae</subject><subject>Analysis</subject><subject>Apomixis</subject><subject>Biology and Life Sciences</subject><subject>Callus</subject><subject>Cell culture</subject><subject>Cell fate</subject><subject>Conferences</subject><subject>Cues</subject><subject>Cultivars</subject><subject>Deoxyribonucleic acid</subject><subject>Deregulation</subject><subject>DNA</subject><subject>DNA Methylation</subject><subject>Drought</subject><subject>Droughts</subject><subject>Ecology and Environmental Sciences</subject><subject>Embryos</subject><subject>Environmental conditions</subject><subject>Environmental stress</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Eragrostis - embryology</subject><subject>Eragrostis - genetics</subject><subject>Eragrostis - physiology</subject><subject>Females</subject><subject>Fertilization</subject><subject>Food</subject><subject>Fracture mechanics</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene regulation</subject><subject>Genomes</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Grasses</subject><subject>Hybridization</subject><subject>Hybridization, Genetic</subject><subject>Incidence</subject><subject>Irrigation</subject><subject>Leaves</subject><subject>Libraries</subject><subject>Males</subject><subject>Markers</subject><subject>Meiosis</subject><subject>Metal matrix composites</subject><subject>Methylation</subject><subject>Moisture content</subject><subject>Mutation</subject><subject>Nitrogen</subject><subject>Physiological aspects</subject><subject>Physiological responses</subject><subject>Plant genetics</subject><subject>Plants</subject><subject>Ploidies</subject><subject>Ploidy</subject><subject>Polyploidy</subject><subject>Reproduction</subject><subject>Reproduction (biology)</subject><subject>Research and Analysis Methods</subject><subject>Salts</subject><subject>Seeds - embryology</subject><subject>Seeds - genetics</subject><subject>Seeds - physiology</subject><subject>Sexual reproduction</subject><subject>Sexuality</subject><subject>Spores</subject><subject>Spring (season)</subject><subject>Stress, Physiological</subject><subject>Stresses</subject><subject>Summer</subject><subject>Tissue culture</subject><subject>Transposons</subject><subject>Trends</subject><subject>Water content</subject><subject>Water deficit</subject><subject>Winter</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl9rFDEUxQdRbK1-A9EBQdqHXSfJ5M-8CEupulAoaPU1ZDI3symzyZrMrO23N9udlh3pg-QhIfndk5uTk2VvUTFHhKNPN34ITnXzjXcwLxCnguJn2TGqCJ4xXJDnB-uj7FWMN0VBiWDsZXaERYkqVNLj7Hqx8Wt7a2NuAvwewOm7fHANhDz2AWLMtXeN7a13Mbcu_wOwsa7NO7-FNqh0fnoRVBt87JOEHsJ26NTZ6-yFUV2EN-N8kv38cnF9_m12efV1eb64nGlW4X4muFKUFRSEYbUBZkrGq9SkME3TGI0pp4A4wqTRuOK8phgZBkQQLkqDi5qcZO_3upvORzkaEiUSoiKsEKhIxHJPNF7dyE2waxXupFdW3m_40EoVeqs7kKI2DS8R2flYclorpgivSXKMMqWhSVqfx9uGeg2NBtcH1U1EpyfOrmTrt5KSiqaeksDpKBB8sjr2cm2jhq5TDvyw75tziniV0A__oE-_bqRalR5gnfHpXr0TlYsyOckIxThR8yeoNBpY2_S9YGzanxScTQoS08Nt36ohRrn88f3_2atfU_bjAbsC1fWr6LvhPl1TsNyDOgUrBjCPJqNC7sL_4IbchV-O4U9l7w4_6LHoIe3kL49X_tA</recordid><startdate>20170418</startdate><enddate>20170418</enddate><creator>Rodrigo, Juan Manuel</creator><creator>Zappacosta, Diego Carlos</creator><creator>Selva, Juan Pablo</creator><creator>Garbus, Ingrid</creator><creator>Albertini, Emidio</creator><creator>Echenique, Viviana</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170418</creationdate><title>Apomixis frequency under stress conditions in weeping lovegrass (Eragrostis curvula)</title><author>Rodrigo, Juan Manuel ; Zappacosta, Diego Carlos ; Selva, Juan Pablo ; Garbus, Ingrid ; Albertini, Emidio ; Echenique, Viviana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-87aa5605e8f6bfe6f46790058fdddfc2575e17123dc2977b521f6e383784f20b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abnormalities</topic><topic>Adaptation</topic><topic>Agriculture</topic><topic>Agronomy</topic><topic>Algae</topic><topic>Analysis</topic><topic>Apomixis</topic><topic>Biology and Life Sciences</topic><topic>Callus</topic><topic>Cell culture</topic><topic>Cell fate</topic><topic>Conferences</topic><topic>Cues</topic><topic>Cultivars</topic><topic>Deoxyribonucleic acid</topic><topic>Deregulation</topic><topic>DNA</topic><topic>DNA Methylation</topic><topic>Drought</topic><topic>Droughts</topic><topic>Ecology and Environmental Sciences</topic><topic>Embryos</topic><topic>Environmental conditions</topic><topic>Environmental stress</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Eragrostis - embryology</topic><topic>Eragrostis - genetics</topic><topic>Eragrostis - physiology</topic><topic>Females</topic><topic>Fertilization</topic><topic>Food</topic><topic>Fracture mechanics</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene regulation</topic><topic>Genomes</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Grasses</topic><topic>Hybridization</topic><topic>Hybridization, Genetic</topic><topic>Incidence</topic><topic>Irrigation</topic><topic>Leaves</topic><topic>Libraries</topic><topic>Males</topic><topic>Markers</topic><topic>Meiosis</topic><topic>Metal matrix composites</topic><topic>Methylation</topic><topic>Moisture content</topic><topic>Mutation</topic><topic>Nitrogen</topic><topic>Physiological aspects</topic><topic>Physiological responses</topic><topic>Plant genetics</topic><topic>Plants</topic><topic>Ploidies</topic><topic>Ploidy</topic><topic>Polyploidy</topic><topic>Reproduction</topic><topic>Reproduction (biology)</topic><topic>Research and Analysis Methods</topic><topic>Salts</topic><topic>Seeds - embryology</topic><topic>Seeds - genetics</topic><topic>Seeds - physiology</topic><topic>Sexual reproduction</topic><topic>Sexuality</topic><topic>Spores</topic><topic>Spring (season)</topic><topic>Stress, Physiological</topic><topic>Stresses</topic><topic>Summer</topic><topic>Tissue culture</topic><topic>Transposons</topic><topic>Trends</topic><topic>Water content</topic><topic>Water deficit</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigo, Juan Manuel</creatorcontrib><creatorcontrib>Zappacosta, Diego Carlos</creatorcontrib><creatorcontrib>Selva, Juan Pablo</creatorcontrib><creatorcontrib>Garbus, Ingrid</creatorcontrib><creatorcontrib>Albertini, Emidio</creatorcontrib><creatorcontrib>Echenique, Viviana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigo, Juan Manuel</au><au>Zappacosta, Diego Carlos</au><au>Selva, Juan Pablo</au><au>Garbus, Ingrid</au><au>Albertini, Emidio</au><au>Echenique, Viviana</au><au>Hörandl, Elvira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Apomixis frequency under stress conditions in weeping lovegrass (Eragrostis curvula)</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-04-18</date><risdate>2017</risdate><volume>12</volume><issue>4</issue><spage>e0175852</spage><epage>e0175852</epage><pages>e0175852-e0175852</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>To overcome environmental stress, plants develop physiological responses that are triggered by genetic or epigenetic changes, some of which involve DNA methylation. It has been proposed that apomixis, the formation of asexual seeds without meiosis, occurs through the temporal or spatial deregulation of the sexual process mediated by genetic and epigenetic factors influenced by the environment. Here, we explored whether there was a link between the occurrence of apomixis and various factors that generate stress, including drought stress, in vitro culture, and intraspecific hybridization. For this purpose, we monitored the embryo sacs of different weeping lovegrass (Eragrostis curvula [Schrad.] Nees) genotypes after the plants were subjected to these stress conditions. Progeny tests based on molecular markers and genome methylation status were analyzed following the stress treatment. When grown in the greenhouse, the cultivar Tanganyika INTA generated less than 2% of its progeny by sexual reproduction. Plants of this cultivar subjected to different stresses showed an increase of sexual embryo sacs, demonstrating an increased expression of sexuality compared to control plants. Plants of the cv. Tanganyika USDA did not demonstrate the ability to generate sexual embryo sacs under any conditions and is therefore classified as a fully apomictic cultivar. We found that this change in the prevalence of sexuality was correlated with genetic and epigenetic changes analyzed by MSAP and AFLPs profiles. Our results demonstrate that different stress conditions can alter the expression of sexual reproduction in facultative tetraploid apomictic cultivars and when the stress stops the reproductive mode shift back to the apomixis original level. These data together with previous observations allow us to generate a hypothetical model of the regulation of apomixis in weeping lovegrass in which the genetic/s region/s that condition apomixis, is/are affected by ploidy, and is/are subjected to epigenetic control.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28419145</pmid><doi>10.1371/journal.pone.0175852</doi><tpages>e0175852</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-04, Vol.12 (4), p.e0175852-e0175852 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1889360810 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Abnormalities Adaptation Agriculture Agronomy Algae Analysis Apomixis Biology and Life Sciences Callus Cell culture Cell fate Conferences Cues Cultivars Deoxyribonucleic acid Deregulation DNA DNA Methylation Drought Droughts Ecology and Environmental Sciences Embryos Environmental conditions Environmental stress Epigenesis, Genetic Epigenetic inheritance Epigenetics Eragrostis - embryology Eragrostis - genetics Eragrostis - physiology Females Fertilization Food Fracture mechanics Fungi Gene expression Gene Expression Regulation, Plant Gene regulation Genomes Genotype Genotypes Grasses Hybridization Hybridization, Genetic Incidence Irrigation Leaves Libraries Males Markers Meiosis Metal matrix composites Methylation Moisture content Mutation Nitrogen Physiological aspects Physiological responses Plant genetics Plants Ploidies Ploidy Polyploidy Reproduction Reproduction (biology) Research and Analysis Methods Salts Seeds - embryology Seeds - genetics Seeds - physiology Sexual reproduction Sexuality Spores Spring (season) Stress, Physiological Stresses Summer Tissue culture Transposons Trends Water content Water deficit Winter |
title | Apomixis frequency under stress conditions in weeping lovegrass (Eragrostis curvula) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A08%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Apomixis%20frequency%20under%20stress%20conditions%20in%20weeping%20lovegrass%20(Eragrostis%20curvula)&rft.jtitle=PloS%20one&rft.au=Rodrigo,%20Juan%20Manuel&rft.date=2017-04-18&rft.volume=12&rft.issue=4&rft.spage=e0175852&rft.epage=e0175852&rft.pages=e0175852-e0175852&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0175852&rft_dat=%3Cgale_plos_%3EA490063522%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1889360810&rft_id=info:pmid/28419145&rft_galeid=A490063522&rft_doaj_id=oai_doaj_org_article_8bfd74135852475ba6a37b338656aced&rfr_iscdi=true |