Catchment vegetation and temperature mediating trophic interactions and production in plankton communities
Climatic factors influence the interactions among trophic levels in an ecosystem in multiple ways. However, whereas most studies focus on single factors in isolation, mainly due to interrelation and correlation among drivers complicating interpretation and analyses, there are still only few studies...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-04, Vol.12 (4), p.e0174904-e0174904 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0174904 |
---|---|
container_issue | 4 |
container_start_page | e0174904 |
container_title | PloS one |
container_volume | 12 |
creator | Finstad, Anders G Nilsen, Erlend B Hendrichsen, Ditte K Schmidt, Niels Martin |
description | Climatic factors influence the interactions among trophic levels in an ecosystem in multiple ways. However, whereas most studies focus on single factors in isolation, mainly due to interrelation and correlation among drivers complicating interpretation and analyses, there are still only few studies on how multiple ecosystems respond to climate related factors at the same time. Here, we use a hierarchical Bayesian model with a bioenergetic predator-prey framework to study how different climatic factors affect trophic interactions and production in small Arctic lakes. Natural variation in temperature and catchment land-cover was used as a natural experiment to exemplify how interactions between and production of primary producers (phytoplankton) and grazers (zooplankton) are driven by direct (temperature) and indirect (catchment vegetation) factors, as well as the presence or absence of apex predators (fish). The results show that increased vegetation cover increased phytoplankton growth rate by mediating lake nutrient concentration. At the same time, increased temperature also increased grazing rates by zooplankton. Presence of fish increased zooplankton mortality rates, thus reducing grazing. The Arctic is currently experiencing an increase in both temperature and shrub vegetation cover due to climate change, a trend, which is likely to continue. Our results point towards a possible future general weakening of zooplankton grazing on phytoplankton and greening of arctic lakes with increasing temperatures. At the same time, the impact of the presence of an apex predator indicate considerable local variation in the response. This makes direction and strength of global change impacts difficult to forecast. |
doi_str_mv | 10.1371/journal.pone.0174904 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1888947517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A489826736</galeid><doaj_id>oai_doaj_org_article_6e85d26a253a4087835111b5a184845c</doaj_id><sourcerecordid>A489826736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-702155f64de8d007a4b3657249f82d2704413aa9a03794e9fec99009e82c6c803</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQLgujDjLm2yYuwDF4GFha8vYZMetrJ2DY1SRf99mZmustU9kHykMv5nX-Sf3Ky7DlGS0xL_G7nRt_rdjm4HpYIl0wi9iA7x5KSRUEQfXgyPsuehLBDiFNRFI-zMyIYZiUtzrPdSkez7aCP-Q00EHW0rs91X-URugG8jqOHvIPKpkjf5NG7YWtNbvuYgmZPhwM-eFeNh3mK5UOr-58xjY3rurG30UJ4mj2qdRvg2dRfZN8_fvi2-ry4uv60Xl1eLUwhSVyUiGDO64JVICqESs02tOAlYbIWpCIlYgxTraVGtJQMZA1GSoQkCGIKIxC9yF4edYfWBTXZFBQWQkhWclwmYn0kKqd3avC20_6Pctqqw4LzjdI-WtOCKkDwihSacKoZEqWgHGO84RoLJhg3Sev9tNu4STaZ5KTX7Ux0HuntVjXuRnEqKWf7w7yZBLz7NUKIqrPBQJscBDcezi2poIiyhL76B73_dhPV6HQB29cu7Wv2ouqSCSlIkV4-Uct7qNQq6KxJf6q2aX2W8HaWkJgIv2OjxxDU-uuX_2evf8zZ1yfsFnQbt8G14-FrzUF2BI13IXio70zGSO1L4tYNtS8JNZVESntx-kB3Sbc1QP8CeREGtg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1888947517</pqid></control><display><type>article</type><title>Catchment vegetation and temperature mediating trophic interactions and production in plankton communities</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Finstad, Anders G ; Nilsen, Erlend B ; Hendrichsen, Ditte K ; Schmidt, Niels Martin</creator><contributor>Eklöv, Peter</contributor><creatorcontrib>Finstad, Anders G ; Nilsen, Erlend B ; Hendrichsen, Ditte K ; Schmidt, Niels Martin ; Eklöv, Peter</creatorcontrib><description>Climatic factors influence the interactions among trophic levels in an ecosystem in multiple ways. However, whereas most studies focus on single factors in isolation, mainly due to interrelation and correlation among drivers complicating interpretation and analyses, there are still only few studies on how multiple ecosystems respond to climate related factors at the same time. Here, we use a hierarchical Bayesian model with a bioenergetic predator-prey framework to study how different climatic factors affect trophic interactions and production in small Arctic lakes. Natural variation in temperature and catchment land-cover was used as a natural experiment to exemplify how interactions between and production of primary producers (phytoplankton) and grazers (zooplankton) are driven by direct (temperature) and indirect (catchment vegetation) factors, as well as the presence or absence of apex predators (fish). The results show that increased vegetation cover increased phytoplankton growth rate by mediating lake nutrient concentration. At the same time, increased temperature also increased grazing rates by zooplankton. Presence of fish increased zooplankton mortality rates, thus reducing grazing. The Arctic is currently experiencing an increase in both temperature and shrub vegetation cover due to climate change, a trend, which is likely to continue. Our results point towards a possible future general weakening of zooplankton grazing on phytoplankton and greening of arctic lakes with increasing temperatures. At the same time, the impact of the presence of an apex predator indicate considerable local variation in the response. This makes direction and strength of global change impacts difficult to forecast.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0174904</identifier><identifier>PMID: 28414736</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Arctic lakes ; Arctic Regions ; Bayes Theorem ; Bayesian analysis ; Biology and Life Sciences ; Catchment areas ; Catchments ; Climate ; Climate and vegetation ; Climate Change ; Earth Sciences ; Ecology and Environmental Sciences ; Ecosystem ; Ecosystems ; Fish ; Fishes - physiology ; Food Chain ; Food chains ; Global temperature changes ; Grazing ; Greening ; Growth rate ; Influence ; Lakes ; Land cover ; Land use ; Models, Biological ; Nutrient concentrations ; People and Places ; Physical Sciences ; Phytoplankton ; Phytoplankton - growth & development ; Phytoplankton - physiology ; Plankton ; Plankton - growth & development ; Plankton - physiology ; Plankton populations ; Polar environments ; Predators ; Prey ; Studies ; Temperature ; Temperature effects ; Temperature variations ; Trophic levels ; Trophic relationships ; Vegetation ; Vegetation cover ; Vegetation zones ; Zooplankton ; Zooplankton - growth & development ; Zooplankton - physiology</subject><ispartof>PloS one, 2017-04, Vol.12 (4), p.e0174904-e0174904</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Finstad et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Finstad et al 2017 Finstad et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-702155f64de8d007a4b3657249f82d2704413aa9a03794e9fec99009e82c6c803</citedby><cites>FETCH-LOGICAL-c692t-702155f64de8d007a4b3657249f82d2704413aa9a03794e9fec99009e82c6c803</cites><orcidid>0000-0003-4529-6266 ; 0000-0002-4166-6218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5393547/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5393547/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2097,2916,23848,27906,27907,53773,53775,79350,79351</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28414736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Eklöv, Peter</contributor><creatorcontrib>Finstad, Anders G</creatorcontrib><creatorcontrib>Nilsen, Erlend B</creatorcontrib><creatorcontrib>Hendrichsen, Ditte K</creatorcontrib><creatorcontrib>Schmidt, Niels Martin</creatorcontrib><title>Catchment vegetation and temperature mediating trophic interactions and production in plankton communities</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Climatic factors influence the interactions among trophic levels in an ecosystem in multiple ways. However, whereas most studies focus on single factors in isolation, mainly due to interrelation and correlation among drivers complicating interpretation and analyses, there are still only few studies on how multiple ecosystems respond to climate related factors at the same time. Here, we use a hierarchical Bayesian model with a bioenergetic predator-prey framework to study how different climatic factors affect trophic interactions and production in small Arctic lakes. Natural variation in temperature and catchment land-cover was used as a natural experiment to exemplify how interactions between and production of primary producers (phytoplankton) and grazers (zooplankton) are driven by direct (temperature) and indirect (catchment vegetation) factors, as well as the presence or absence of apex predators (fish). The results show that increased vegetation cover increased phytoplankton growth rate by mediating lake nutrient concentration. At the same time, increased temperature also increased grazing rates by zooplankton. Presence of fish increased zooplankton mortality rates, thus reducing grazing. The Arctic is currently experiencing an increase in both temperature and shrub vegetation cover due to climate change, a trend, which is likely to continue. Our results point towards a possible future general weakening of zooplankton grazing on phytoplankton and greening of arctic lakes with increasing temperatures. At the same time, the impact of the presence of an apex predator indicate considerable local variation in the response. This makes direction and strength of global change impacts difficult to forecast.</description><subject>Animals</subject><subject>Arctic lakes</subject><subject>Arctic Regions</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology and Life Sciences</subject><subject>Catchment areas</subject><subject>Catchments</subject><subject>Climate</subject><subject>Climate and vegetation</subject><subject>Climate Change</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Fish</subject><subject>Fishes - physiology</subject><subject>Food Chain</subject><subject>Food chains</subject><subject>Global temperature changes</subject><subject>Grazing</subject><subject>Greening</subject><subject>Growth rate</subject><subject>Influence</subject><subject>Lakes</subject><subject>Land cover</subject><subject>Land use</subject><subject>Models, Biological</subject><subject>Nutrient concentrations</subject><subject>People and Places</subject><subject>Physical Sciences</subject><subject>Phytoplankton</subject><subject>Phytoplankton - growth & development</subject><subject>Phytoplankton - physiology</subject><subject>Plankton</subject><subject>Plankton - growth & development</subject><subject>Plankton - physiology</subject><subject>Plankton populations</subject><subject>Polar environments</subject><subject>Predators</subject><subject>Prey</subject><subject>Studies</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Temperature variations</subject><subject>Trophic levels</subject><subject>Trophic relationships</subject><subject>Vegetation</subject><subject>Vegetation cover</subject><subject>Vegetation zones</subject><subject>Zooplankton</subject><subject>Zooplankton - growth & development</subject><subject>Zooplankton - physiology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQLgujDjLm2yYuwDF4GFha8vYZMetrJ2DY1SRf99mZmustU9kHykMv5nX-Sf3Ky7DlGS0xL_G7nRt_rdjm4HpYIl0wi9iA7x5KSRUEQfXgyPsuehLBDiFNRFI-zMyIYZiUtzrPdSkez7aCP-Q00EHW0rs91X-URugG8jqOHvIPKpkjf5NG7YWtNbvuYgmZPhwM-eFeNh3mK5UOr-58xjY3rurG30UJ4mj2qdRvg2dRfZN8_fvi2-ry4uv60Xl1eLUwhSVyUiGDO64JVICqESs02tOAlYbIWpCIlYgxTraVGtJQMZA1GSoQkCGIKIxC9yF4edYfWBTXZFBQWQkhWclwmYn0kKqd3avC20_6Pctqqw4LzjdI-WtOCKkDwihSacKoZEqWgHGO84RoLJhg3Sev9tNu4STaZ5KTX7Ux0HuntVjXuRnEqKWf7w7yZBLz7NUKIqrPBQJscBDcezi2poIiyhL76B73_dhPV6HQB29cu7Wv2ouqSCSlIkV4-Uct7qNQq6KxJf6q2aX2W8HaWkJgIv2OjxxDU-uuX_2evf8zZ1yfsFnQbt8G14-FrzUF2BI13IXio70zGSO1L4tYNtS8JNZVESntx-kB3Sbc1QP8CeREGtg</recordid><startdate>20170417</startdate><enddate>20170417</enddate><creator>Finstad, Anders G</creator><creator>Nilsen, Erlend B</creator><creator>Hendrichsen, Ditte K</creator><creator>Schmidt, Niels Martin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4529-6266</orcidid><orcidid>https://orcid.org/0000-0002-4166-6218</orcidid></search><sort><creationdate>20170417</creationdate><title>Catchment vegetation and temperature mediating trophic interactions and production in plankton communities</title><author>Finstad, Anders G ; Nilsen, Erlend B ; Hendrichsen, Ditte K ; Schmidt, Niels Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-702155f64de8d007a4b3657249f82d2704413aa9a03794e9fec99009e82c6c803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Arctic lakes</topic><topic>Arctic Regions</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology and Life Sciences</topic><topic>Catchment areas</topic><topic>Catchments</topic><topic>Climate</topic><topic>Climate and vegetation</topic><topic>Climate Change</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Fish</topic><topic>Fishes - physiology</topic><topic>Food Chain</topic><topic>Food chains</topic><topic>Global temperature changes</topic><topic>Grazing</topic><topic>Greening</topic><topic>Growth rate</topic><topic>Influence</topic><topic>Lakes</topic><topic>Land cover</topic><topic>Land use</topic><topic>Models, Biological</topic><topic>Nutrient concentrations</topic><topic>People and Places</topic><topic>Physical Sciences</topic><topic>Phytoplankton</topic><topic>Phytoplankton - growth & development</topic><topic>Phytoplankton - physiology</topic><topic>Plankton</topic><topic>Plankton - growth & development</topic><topic>Plankton - physiology</topic><topic>Plankton populations</topic><topic>Polar environments</topic><topic>Predators</topic><topic>Prey</topic><topic>Studies</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Temperature variations</topic><topic>Trophic levels</topic><topic>Trophic relationships</topic><topic>Vegetation</topic><topic>Vegetation cover</topic><topic>Vegetation zones</topic><topic>Zooplankton</topic><topic>Zooplankton - growth & development</topic><topic>Zooplankton - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finstad, Anders G</creatorcontrib><creatorcontrib>Nilsen, Erlend B</creatorcontrib><creatorcontrib>Hendrichsen, Ditte K</creatorcontrib><creatorcontrib>Schmidt, Niels Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Finstad, Anders G</au><au>Nilsen, Erlend B</au><au>Hendrichsen, Ditte K</au><au>Schmidt, Niels Martin</au><au>Eklöv, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catchment vegetation and temperature mediating trophic interactions and production in plankton communities</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-04-17</date><risdate>2017</risdate><volume>12</volume><issue>4</issue><spage>e0174904</spage><epage>e0174904</epage><pages>e0174904-e0174904</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Climatic factors influence the interactions among trophic levels in an ecosystem in multiple ways. However, whereas most studies focus on single factors in isolation, mainly due to interrelation and correlation among drivers complicating interpretation and analyses, there are still only few studies on how multiple ecosystems respond to climate related factors at the same time. Here, we use a hierarchical Bayesian model with a bioenergetic predator-prey framework to study how different climatic factors affect trophic interactions and production in small Arctic lakes. Natural variation in temperature and catchment land-cover was used as a natural experiment to exemplify how interactions between and production of primary producers (phytoplankton) and grazers (zooplankton) are driven by direct (temperature) and indirect (catchment vegetation) factors, as well as the presence or absence of apex predators (fish). The results show that increased vegetation cover increased phytoplankton growth rate by mediating lake nutrient concentration. At the same time, increased temperature also increased grazing rates by zooplankton. Presence of fish increased zooplankton mortality rates, thus reducing grazing. The Arctic is currently experiencing an increase in both temperature and shrub vegetation cover due to climate change, a trend, which is likely to continue. Our results point towards a possible future general weakening of zooplankton grazing on phytoplankton and greening of arctic lakes with increasing temperatures. At the same time, the impact of the presence of an apex predator indicate considerable local variation in the response. This makes direction and strength of global change impacts difficult to forecast.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28414736</pmid><doi>10.1371/journal.pone.0174904</doi><tpages>e0174904</tpages><orcidid>https://orcid.org/0000-0003-4529-6266</orcidid><orcidid>https://orcid.org/0000-0002-4166-6218</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-04, Vol.12 (4), p.e0174904-e0174904 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1888947517 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Arctic lakes Arctic Regions Bayes Theorem Bayesian analysis Biology and Life Sciences Catchment areas Catchments Climate Climate and vegetation Climate Change Earth Sciences Ecology and Environmental Sciences Ecosystem Ecosystems Fish Fishes - physiology Food Chain Food chains Global temperature changes Grazing Greening Growth rate Influence Lakes Land cover Land use Models, Biological Nutrient concentrations People and Places Physical Sciences Phytoplankton Phytoplankton - growth & development Phytoplankton - physiology Plankton Plankton - growth & development Plankton - physiology Plankton populations Polar environments Predators Prey Studies Temperature Temperature effects Temperature variations Trophic levels Trophic relationships Vegetation Vegetation cover Vegetation zones Zooplankton Zooplankton - growth & development Zooplankton - physiology |
title | Catchment vegetation and temperature mediating trophic interactions and production in plankton communities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catchment%20vegetation%20and%20temperature%20mediating%20trophic%20interactions%20and%20production%20in%20plankton%20communities&rft.jtitle=PloS%20one&rft.au=Finstad,%20Anders%20G&rft.date=2017-04-17&rft.volume=12&rft.issue=4&rft.spage=e0174904&rft.epage=e0174904&rft.pages=e0174904-e0174904&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0174904&rft_dat=%3Cgale_plos_%3EA489826736%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1888947517&rft_id=info:pmid/28414736&rft_galeid=A489826736&rft_doaj_id=oai_doaj_org_article_6e85d26a253a4087835111b5a184845c&rfr_iscdi=true |