Negative feedback loop of bone resorption by NFATc1-dependent induction of Cadm1

Trimethylation of histone H3 lysine 4 and lysine 27 (H3K4me3 and H3K27me3) at gene promoter regions critically regulates gene expression. Key developmental genes tend to exhibit changes in histone modification patterns from the H3K4me3/H3K27me3 bivalent pattern to the H3K4me3 monovalent pattern. Usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-04, Vol.12 (4), p.e0175632
Hauptverfasser: Nakamura, Shinya, Koyama, Takuma, Izawa, Naohiro, Nomura, Seitaro, Fujita, Takanori, Omata, Yasunori, Minami, Takashi, Matsumoto, Morio, Nakamura, Masaya, Fujita-Jimbo, Eriko, Momoi, Takashi, Miyamoto, Takeshi, Aburatani, Hiroyuki, Tanaka, Sakae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page e0175632
container_title PloS one
container_volume 12
creator Nakamura, Shinya
Koyama, Takuma
Izawa, Naohiro
Nomura, Seitaro
Fujita, Takanori
Omata, Yasunori
Minami, Takashi
Matsumoto, Morio
Nakamura, Masaya
Fujita-Jimbo, Eriko
Momoi, Takashi
Miyamoto, Takeshi
Aburatani, Hiroyuki
Tanaka, Sakae
description Trimethylation of histone H3 lysine 4 and lysine 27 (H3K4me3 and H3K27me3) at gene promoter regions critically regulates gene expression. Key developmental genes tend to exhibit changes in histone modification patterns from the H3K4me3/H3K27me3 bivalent pattern to the H3K4me3 monovalent pattern. Using comprehensive chromatin immunoprecipitation followed by sequencing in bone marrow-derived macrophages (BMMs) and mature osteoclasts, we found that cell surface adhesion molecule 1 (Cadm1) is a direct target of nuclear factor of activated T cells 1 (NFATc1) and exhibits a bivalent histone pattern in BMMs and a monovalent pattern in osteoclasts. Cadm1 expression was upregulated in BMMs by receptor activator of nuclear factor kappa B ligand (RANKL), and blocked by a calcineurin/NFATc1 inhibitor, FK506. Cadm1-deficient mice exhibited significantly reduced bone mass compared with wild-type mice, which was due to the increased osteoclast differentiation, survival and bone-resorbing activity in Cadm1-deficient osteoclasts. These results suggest that Cadm1 is a direct target of NFATc1, which is induced by RANKL through epigenetic modification, and regulates osteoclastic bone resorption in a negative feedback manner.
doi_str_mv 10.1371/journal.pone.0175632
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1888947425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A489826669</galeid><doaj_id>oai_doaj_org_article_25035f78986246198781dd29ab18eea8</doaj_id><sourcerecordid>A489826669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-730368335d13cbc95295aba913df905cad9fa9d314802361c309eae070c34753</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhiMEYmPwDxBEQkJw0eKPxB83SFW1QaVpQ1Bxazn2SeuSxlmcTNu_x22zqUG7QL6wZT_va5_jN0neYjTFlOMvG9-3ta6mja9hijDPGSXPklMsKZkwgujzo_VJ8iqEDUI5FYy9TE6IyHDGZX6a_LiCle7cLaQlgC20-ZNW3jepL9MiGqctBN82nfN1WtynVxezpcETCw3UFuoudbXtzf40CubabvHr5EWpqwBvhvksWV6cL-ffJ5fX3xbz2eXEMEm6CaeIMkFpbjE1hZE5kbkutMTUlhLlRltZamkpzgQilGFDkQQNiCNDM57Ts-T9wbapfFBDL4LCQgiZ8YzsiMWBsF5vVNO6rW7vlddO7Td8u1K67ZypQJEc0bzkQgpGMoal4AJbS6QusADQInp9HW7riy1YE0tvdTUyHZ_Ubq1W_lblVFKGeDT4NBi0_qaH0KmtCwaqStfg-_27JRUZJyyiH_5Bn65uoFY6FuDq0sd7zc5UzbJYCGGMyUhNn6DisLB1Jv5v6eL-SPB5JIhMB3fdSvchqMWvn__PXv8esx-P2DXoqlsHX_W76IQxmB1A0_oQWigfm4yR2uX-oRtql3s15D7K3h1_0KPoIej0LzNc-sI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1888947425</pqid></control><display><type>article</type><title>Negative feedback loop of bone resorption by NFATc1-dependent induction of Cadm1</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Nakamura, Shinya ; Koyama, Takuma ; Izawa, Naohiro ; Nomura, Seitaro ; Fujita, Takanori ; Omata, Yasunori ; Minami, Takashi ; Matsumoto, Morio ; Nakamura, Masaya ; Fujita-Jimbo, Eriko ; Momoi, Takashi ; Miyamoto, Takeshi ; Aburatani, Hiroyuki ; Tanaka, Sakae</creator><contributor>Reddy, Sakamuri V.</contributor><creatorcontrib>Nakamura, Shinya ; Koyama, Takuma ; Izawa, Naohiro ; Nomura, Seitaro ; Fujita, Takanori ; Omata, Yasunori ; Minami, Takashi ; Matsumoto, Morio ; Nakamura, Masaya ; Fujita-Jimbo, Eriko ; Momoi, Takashi ; Miyamoto, Takeshi ; Aburatani, Hiroyuki ; Tanaka, Sakae ; Reddy, Sakamuri V.</creatorcontrib><description>Trimethylation of histone H3 lysine 4 and lysine 27 (H3K4me3 and H3K27me3) at gene promoter regions critically regulates gene expression. Key developmental genes tend to exhibit changes in histone modification patterns from the H3K4me3/H3K27me3 bivalent pattern to the H3K4me3 monovalent pattern. Using comprehensive chromatin immunoprecipitation followed by sequencing in bone marrow-derived macrophages (BMMs) and mature osteoclasts, we found that cell surface adhesion molecule 1 (Cadm1) is a direct target of nuclear factor of activated T cells 1 (NFATc1) and exhibits a bivalent histone pattern in BMMs and a monovalent pattern in osteoclasts. Cadm1 expression was upregulated in BMMs by receptor activator of nuclear factor kappa B ligand (RANKL), and blocked by a calcineurin/NFATc1 inhibitor, FK506. Cadm1-deficient mice exhibited significantly reduced bone mass compared with wild-type mice, which was due to the increased osteoclast differentiation, survival and bone-resorbing activity in Cadm1-deficient osteoclasts. These results suggest that Cadm1 is a direct target of NFATc1, which is induced by RANKL through epigenetic modification, and regulates osteoclastic bone resorption in a negative feedback manner.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0175632</identifier><identifier>PMID: 28414795</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adapter proteins ; Animals ; Biology and Life Sciences ; Bone marrow ; Bone resorption ; Bone Resorption - genetics ; Bone Resorption - metabolism ; Bone Resorption - pathology ; Bone surgery ; Cell adhesion &amp; migration ; Cell Adhesion Molecule-1 ; Cell Adhesion Molecules - biosynthesis ; Cell Adhesion Molecules - deficiency ; Cell Adhesion Molecules - genetics ; Cell Adhesion Molecules - metabolism ; Cell cycle ; Cell Differentiation ; Deoxyribonucleic acid ; DNA ; DNA methylation ; Epigenesis, Genetic ; Epigenetic inheritance ; Feedback, Physiological ; Gene Expression ; Genomes ; Histones - genetics ; Histones - metabolism ; Homeostasis ; Immune response ; Immune system ; Immunoglobulins - biosynthesis ; Immunoglobulins - deficiency ; Immunoglobulins - genetics ; Kinases ; Ligands ; Lung cancer ; Lymphocytes T ; Lysine ; Macrophages - cytology ; Macrophages - metabolism ; Male ; Medicine ; Medicine and Health Sciences ; Methylation ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Negative feedback ; NFATC Transcription Factors - metabolism ; Orthopedics ; Osteoclasts (Biology) ; Osteoclasts - cytology ; Osteoclasts - metabolism ; Polyclonal antibodies ; Promoter Regions, Genetic ; RANK Ligand - metabolism ; Research and Analysis Methods ; Science ; Stem cells ; T cells</subject><ispartof>PloS one, 2017-04, Vol.12 (4), p.e0175632</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Nakamura et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Nakamura et al 2017 Nakamura et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-730368335d13cbc95295aba913df905cad9fa9d314802361c309eae070c34753</citedby><cites>FETCH-LOGICAL-c692t-730368335d13cbc95295aba913df905cad9fa9d314802361c309eae070c34753</cites><orcidid>0000-0001-9373-5142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5393607/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5393607/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28414795$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Reddy, Sakamuri V.</contributor><creatorcontrib>Nakamura, Shinya</creatorcontrib><creatorcontrib>Koyama, Takuma</creatorcontrib><creatorcontrib>Izawa, Naohiro</creatorcontrib><creatorcontrib>Nomura, Seitaro</creatorcontrib><creatorcontrib>Fujita, Takanori</creatorcontrib><creatorcontrib>Omata, Yasunori</creatorcontrib><creatorcontrib>Minami, Takashi</creatorcontrib><creatorcontrib>Matsumoto, Morio</creatorcontrib><creatorcontrib>Nakamura, Masaya</creatorcontrib><creatorcontrib>Fujita-Jimbo, Eriko</creatorcontrib><creatorcontrib>Momoi, Takashi</creatorcontrib><creatorcontrib>Miyamoto, Takeshi</creatorcontrib><creatorcontrib>Aburatani, Hiroyuki</creatorcontrib><creatorcontrib>Tanaka, Sakae</creatorcontrib><title>Negative feedback loop of bone resorption by NFATc1-dependent induction of Cadm1</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Trimethylation of histone H3 lysine 4 and lysine 27 (H3K4me3 and H3K27me3) at gene promoter regions critically regulates gene expression. Key developmental genes tend to exhibit changes in histone modification patterns from the H3K4me3/H3K27me3 bivalent pattern to the H3K4me3 monovalent pattern. Using comprehensive chromatin immunoprecipitation followed by sequencing in bone marrow-derived macrophages (BMMs) and mature osteoclasts, we found that cell surface adhesion molecule 1 (Cadm1) is a direct target of nuclear factor of activated T cells 1 (NFATc1) and exhibits a bivalent histone pattern in BMMs and a monovalent pattern in osteoclasts. Cadm1 expression was upregulated in BMMs by receptor activator of nuclear factor kappa B ligand (RANKL), and blocked by a calcineurin/NFATc1 inhibitor, FK506. Cadm1-deficient mice exhibited significantly reduced bone mass compared with wild-type mice, which was due to the increased osteoclast differentiation, survival and bone-resorbing activity in Cadm1-deficient osteoclasts. These results suggest that Cadm1 is a direct target of NFATc1, which is induced by RANKL through epigenetic modification, and regulates osteoclastic bone resorption in a negative feedback manner.</description><subject>Adapter proteins</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Bone marrow</subject><subject>Bone resorption</subject><subject>Bone Resorption - genetics</subject><subject>Bone Resorption - metabolism</subject><subject>Bone Resorption - pathology</subject><subject>Bone surgery</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Adhesion Molecule-1</subject><subject>Cell Adhesion Molecules - biosynthesis</subject><subject>Cell Adhesion Molecules - deficiency</subject><subject>Cell Adhesion Molecules - genetics</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cell cycle</subject><subject>Cell Differentiation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetic inheritance</subject><subject>Feedback, Physiological</subject><subject>Gene Expression</subject><subject>Genomes</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Homeostasis</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunoglobulins - biosynthesis</subject><subject>Immunoglobulins - deficiency</subject><subject>Immunoglobulins - genetics</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Lung cancer</subject><subject>Lymphocytes T</subject><subject>Lysine</subject><subject>Macrophages - cytology</subject><subject>Macrophages - metabolism</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Methylation</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Negative feedback</subject><subject>NFATC Transcription Factors - metabolism</subject><subject>Orthopedics</subject><subject>Osteoclasts (Biology)</subject><subject>Osteoclasts - cytology</subject><subject>Osteoclasts - metabolism</subject><subject>Polyclonal antibodies</subject><subject>Promoter Regions, Genetic</subject><subject>RANK Ligand - metabolism</subject><subject>Research and Analysis Methods</subject><subject>Science</subject><subject>Stem cells</subject><subject>T cells</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1v0zAUhiMEYmPwDxBEQkJw0eKPxB83SFW1QaVpQ1Bxazn2SeuSxlmcTNu_x22zqUG7QL6wZT_va5_jN0neYjTFlOMvG9-3ta6mja9hijDPGSXPklMsKZkwgujzo_VJ8iqEDUI5FYy9TE6IyHDGZX6a_LiCle7cLaQlgC20-ZNW3jepL9MiGqctBN82nfN1WtynVxezpcETCw3UFuoudbXtzf40CubabvHr5EWpqwBvhvksWV6cL-ffJ5fX3xbz2eXEMEm6CaeIMkFpbjE1hZE5kbkutMTUlhLlRltZamkpzgQilGFDkQQNiCNDM57Ts-T9wbapfFBDL4LCQgiZ8YzsiMWBsF5vVNO6rW7vlddO7Td8u1K67ZypQJEc0bzkQgpGMoal4AJbS6QusADQInp9HW7riy1YE0tvdTUyHZ_Ubq1W_lblVFKGeDT4NBi0_qaH0KmtCwaqStfg-_27JRUZJyyiH_5Bn65uoFY6FuDq0sd7zc5UzbJYCGGMyUhNn6DisLB1Jv5v6eL-SPB5JIhMB3fdSvchqMWvn__PXv8esx-P2DXoqlsHX_W76IQxmB1A0_oQWigfm4yR2uX-oRtql3s15D7K3h1_0KPoIej0LzNc-sI</recordid><startdate>20170417</startdate><enddate>20170417</enddate><creator>Nakamura, Shinya</creator><creator>Koyama, Takuma</creator><creator>Izawa, Naohiro</creator><creator>Nomura, Seitaro</creator><creator>Fujita, Takanori</creator><creator>Omata, Yasunori</creator><creator>Minami, Takashi</creator><creator>Matsumoto, Morio</creator><creator>Nakamura, Masaya</creator><creator>Fujita-Jimbo, Eriko</creator><creator>Momoi, Takashi</creator><creator>Miyamoto, Takeshi</creator><creator>Aburatani, Hiroyuki</creator><creator>Tanaka, Sakae</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9373-5142</orcidid></search><sort><creationdate>20170417</creationdate><title>Negative feedback loop of bone resorption by NFATc1-dependent induction of Cadm1</title><author>Nakamura, Shinya ; Koyama, Takuma ; Izawa, Naohiro ; Nomura, Seitaro ; Fujita, Takanori ; Omata, Yasunori ; Minami, Takashi ; Matsumoto, Morio ; Nakamura, Masaya ; Fujita-Jimbo, Eriko ; Momoi, Takashi ; Miyamoto, Takeshi ; Aburatani, Hiroyuki ; Tanaka, Sakae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-730368335d13cbc95295aba913df905cad9fa9d314802361c309eae070c34753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adapter proteins</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Bone marrow</topic><topic>Bone resorption</topic><topic>Bone Resorption - genetics</topic><topic>Bone Resorption - metabolism</topic><topic>Bone Resorption - pathology</topic><topic>Bone surgery</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Adhesion Molecule-1</topic><topic>Cell Adhesion Molecules - biosynthesis</topic><topic>Cell Adhesion Molecules - deficiency</topic><topic>Cell Adhesion Molecules - genetics</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cell cycle</topic><topic>Cell Differentiation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetic inheritance</topic><topic>Feedback, Physiological</topic><topic>Gene Expression</topic><topic>Genomes</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Homeostasis</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunoglobulins - biosynthesis</topic><topic>Immunoglobulins - deficiency</topic><topic>Immunoglobulins - genetics</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Lung cancer</topic><topic>Lymphocytes T</topic><topic>Lysine</topic><topic>Macrophages - cytology</topic><topic>Macrophages - metabolism</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Methylation</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Negative feedback</topic><topic>NFATC Transcription Factors - metabolism</topic><topic>Orthopedics</topic><topic>Osteoclasts (Biology)</topic><topic>Osteoclasts - cytology</topic><topic>Osteoclasts - metabolism</topic><topic>Polyclonal antibodies</topic><topic>Promoter Regions, Genetic</topic><topic>RANK Ligand - metabolism</topic><topic>Research and Analysis Methods</topic><topic>Science</topic><topic>Stem cells</topic><topic>T cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakamura, Shinya</creatorcontrib><creatorcontrib>Koyama, Takuma</creatorcontrib><creatorcontrib>Izawa, Naohiro</creatorcontrib><creatorcontrib>Nomura, Seitaro</creatorcontrib><creatorcontrib>Fujita, Takanori</creatorcontrib><creatorcontrib>Omata, Yasunori</creatorcontrib><creatorcontrib>Minami, Takashi</creatorcontrib><creatorcontrib>Matsumoto, Morio</creatorcontrib><creatorcontrib>Nakamura, Masaya</creatorcontrib><creatorcontrib>Fujita-Jimbo, Eriko</creatorcontrib><creatorcontrib>Momoi, Takashi</creatorcontrib><creatorcontrib>Miyamoto, Takeshi</creatorcontrib><creatorcontrib>Aburatani, Hiroyuki</creatorcontrib><creatorcontrib>Tanaka, Sakae</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakamura, Shinya</au><au>Koyama, Takuma</au><au>Izawa, Naohiro</au><au>Nomura, Seitaro</au><au>Fujita, Takanori</au><au>Omata, Yasunori</au><au>Minami, Takashi</au><au>Matsumoto, Morio</au><au>Nakamura, Masaya</au><au>Fujita-Jimbo, Eriko</au><au>Momoi, Takashi</au><au>Miyamoto, Takeshi</au><au>Aburatani, Hiroyuki</au><au>Tanaka, Sakae</au><au>Reddy, Sakamuri V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Negative feedback loop of bone resorption by NFATc1-dependent induction of Cadm1</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-04-17</date><risdate>2017</risdate><volume>12</volume><issue>4</issue><spage>e0175632</spage><pages>e0175632-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Trimethylation of histone H3 lysine 4 and lysine 27 (H3K4me3 and H3K27me3) at gene promoter regions critically regulates gene expression. Key developmental genes tend to exhibit changes in histone modification patterns from the H3K4me3/H3K27me3 bivalent pattern to the H3K4me3 monovalent pattern. Using comprehensive chromatin immunoprecipitation followed by sequencing in bone marrow-derived macrophages (BMMs) and mature osteoclasts, we found that cell surface adhesion molecule 1 (Cadm1) is a direct target of nuclear factor of activated T cells 1 (NFATc1) and exhibits a bivalent histone pattern in BMMs and a monovalent pattern in osteoclasts. Cadm1 expression was upregulated in BMMs by receptor activator of nuclear factor kappa B ligand (RANKL), and blocked by a calcineurin/NFATc1 inhibitor, FK506. Cadm1-deficient mice exhibited significantly reduced bone mass compared with wild-type mice, which was due to the increased osteoclast differentiation, survival and bone-resorbing activity in Cadm1-deficient osteoclasts. These results suggest that Cadm1 is a direct target of NFATc1, which is induced by RANKL through epigenetic modification, and regulates osteoclastic bone resorption in a negative feedback manner.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28414795</pmid><doi>10.1371/journal.pone.0175632</doi><tpages>e0175632</tpages><orcidid>https://orcid.org/0000-0001-9373-5142</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-04, Vol.12 (4), p.e0175632
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1888947425
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adapter proteins
Animals
Biology and Life Sciences
Bone marrow
Bone resorption
Bone Resorption - genetics
Bone Resorption - metabolism
Bone Resorption - pathology
Bone surgery
Cell adhesion & migration
Cell Adhesion Molecule-1
Cell Adhesion Molecules - biosynthesis
Cell Adhesion Molecules - deficiency
Cell Adhesion Molecules - genetics
Cell Adhesion Molecules - metabolism
Cell cycle
Cell Differentiation
Deoxyribonucleic acid
DNA
DNA methylation
Epigenesis, Genetic
Epigenetic inheritance
Feedback, Physiological
Gene Expression
Genomes
Histones - genetics
Histones - metabolism
Homeostasis
Immune response
Immune system
Immunoglobulins - biosynthesis
Immunoglobulins - deficiency
Immunoglobulins - genetics
Kinases
Ligands
Lung cancer
Lymphocytes T
Lysine
Macrophages - cytology
Macrophages - metabolism
Male
Medicine
Medicine and Health Sciences
Methylation
Mice
Mice, Inbred C57BL
Mice, Knockout
Negative feedback
NFATC Transcription Factors - metabolism
Orthopedics
Osteoclasts (Biology)
Osteoclasts - cytology
Osteoclasts - metabolism
Polyclonal antibodies
Promoter Regions, Genetic
RANK Ligand - metabolism
Research and Analysis Methods
Science
Stem cells
T cells
title Negative feedback loop of bone resorption by NFATc1-dependent induction of Cadm1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Negative%20feedback%20loop%20of%20bone%20resorption%20by%20NFATc1-dependent%20induction%20of%20Cadm1&rft.jtitle=PloS%20one&rft.au=Nakamura,%20Shinya&rft.date=2017-04-17&rft.volume=12&rft.issue=4&rft.spage=e0175632&rft.pages=e0175632-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0175632&rft_dat=%3Cgale_plos_%3EA489826669%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1888947425&rft_id=info:pmid/28414795&rft_galeid=A489826669&rft_doaj_id=oai_doaj_org_article_25035f78986246198781dd29ab18eea8&rfr_iscdi=true