Dynamics robustness of cascading systems

A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robust...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2017-03, Vol.13 (3), p.e1005434-e1005434
Hauptverfasser: Young, Jonathan T, Hatakeyama, Tetsuhiro S, Kaneko, Kunihiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1005434
container_issue 3
container_start_page e1005434
container_title PLoS computational biology
container_volume 13
creator Young, Jonathan T
Hatakeyama, Tetsuhiro S
Kaneko, Kunihiko
description A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1) Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2) Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it will provide a general basis for how biological systems function dynamically.
doi_str_mv 10.1371/journal.pcbi.1005434
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1888661405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A493714144</galeid><doaj_id>oai_doaj_org_article_318d3e8c6a874bf38c6020ec9720e2c8</doaj_id><sourcerecordid>A493714144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-300606f1c7afdb185f03cc617f5e2b75e5a74f15712abbff58772f75314efa1e3</originalsourceid><addsrcrecordid>eNqVkluL1DAUx4so7kW_geiAL-vDjElz7YuwrLeBRcHLc0jTk5qhbcacVpxvvxmnu-yILxJIDsnv_E9O8i-KZ5SsKFP09SZOabDdauvqsKKECM74g-KUCsGWign98F58UpwhbgjJYSUfFyelLrXOp6fFxdvdYPvgcJFiPeE4AOIi-oWz6GwThnaBOxyhxyfFI287hKfzel58f__u29XH5fXnD-ury-ulk4yNS0aIJNJTp6xvaqqFJ8w5SZUXUNZKgLCKeyoULW1dey-0UqVXglEO3lJg58WLg-62i2jmJtFQrbWUlBORifWBaKLdmG0KvU07E20wfzZiao1NY3AdGEZ1w0A7abXitWc5IiUBV6k8l05nrTdztanuoXEwjMl2R6LHJ0P4Ydr4ywgmlWZ7gYtZIMWfE-Bo-oAOus4OEKf9vZUSpaxUldGXf6H_7m51oFqbGwiDj7muy6OB_E1xAB_y_iWvsgc45TwnvDpKyMwIv8fWTohm_fXLf7Cfjll-YF2KiAn83atQYvYOvL2-2TvQzA7Mac_vv-hd0q3l2A1jjtYq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1888661405</pqid></control><display><type>article</type><title>Dynamics robustness of cascading systems</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Young, Jonathan T ; Hatakeyama, Tetsuhiro S ; Kaneko, Kunihiko</creator><creatorcontrib>Young, Jonathan T ; Hatakeyama, Tetsuhiro S ; Kaneko, Kunihiko</creatorcontrib><description>A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1) Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2) Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it will provide a general basis for how biological systems function dynamically.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1005434</identifier><identifier>PMID: 28288155</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biological research ; Biology ; Biology and Life Sciences ; Cascades ; Cell Physiological Phenomena ; Computer and Information Sciences ; Computer Simulation ; Constraining ; Dynamic systems theory ; Dynamical systems ; Dynamics ; Funding ; Homeostasis ; Humans ; Information processing ; Initial conditions ; Kinases ; Kinetics ; Mathematical models ; Methods ; Models, Biological ; Modules ; Multienzyme Complexes - metabolism ; Phosphatase ; Physical Sciences ; Proteome - metabolism ; R&amp;D ; Research &amp; development ; Robustness ; Signal transduction ; Signal Transduction - physiology ; System theory ; Upstream</subject><ispartof>PLoS computational biology, 2017-03, Vol.13 (3), p.e1005434-e1005434</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Young JT, Hatakeyama TS, Kaneko K (2017) Dynamics robustness of cascading systems. PLoS Comput Biol 13(3): e1005434. https://doi.org/10.1371/journal.pcbi.1005434</rights><rights>2017 Young et al 2017 Young et al</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Young JT, Hatakeyama TS, Kaneko K (2017) Dynamics robustness of cascading systems. PLoS Comput Biol 13(3): e1005434. https://doi.org/10.1371/journal.pcbi.1005434</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-300606f1c7afdb185f03cc617f5e2b75e5a74f15712abbff58772f75314efa1e3</citedby><cites>FETCH-LOGICAL-c633t-300606f1c7afdb185f03cc617f5e2b75e5a74f15712abbff58772f75314efa1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5367838/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5367838/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28288155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Young, Jonathan T</creatorcontrib><creatorcontrib>Hatakeyama, Tetsuhiro S</creatorcontrib><creatorcontrib>Kaneko, Kunihiko</creatorcontrib><title>Dynamics robustness of cascading systems</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1) Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2) Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it will provide a general basis for how biological systems function dynamically.</description><subject>Animals</subject><subject>Biological research</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Cascades</subject><subject>Cell Physiological Phenomena</subject><subject>Computer and Information Sciences</subject><subject>Computer Simulation</subject><subject>Constraining</subject><subject>Dynamic systems theory</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Funding</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Information processing</subject><subject>Initial conditions</subject><subject>Kinases</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Models, Biological</subject><subject>Modules</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Phosphatase</subject><subject>Physical Sciences</subject><subject>Proteome - metabolism</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Robustness</subject><subject>Signal transduction</subject><subject>Signal Transduction - physiology</subject><subject>System theory</subject><subject>Upstream</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkluL1DAUx4so7kW_geiAL-vDjElz7YuwrLeBRcHLc0jTk5qhbcacVpxvvxmnu-yILxJIDsnv_E9O8i-KZ5SsKFP09SZOabDdauvqsKKECM74g-KUCsGWign98F58UpwhbgjJYSUfFyelLrXOp6fFxdvdYPvgcJFiPeE4AOIi-oWz6GwThnaBOxyhxyfFI287hKfzel58f__u29XH5fXnD-ury-ulk4yNS0aIJNJTp6xvaqqFJ8w5SZUXUNZKgLCKeyoULW1dey-0UqVXglEO3lJg58WLg-62i2jmJtFQrbWUlBORifWBaKLdmG0KvU07E20wfzZiao1NY3AdGEZ1w0A7abXitWc5IiUBV6k8l05nrTdztanuoXEwjMl2R6LHJ0P4Ydr4ywgmlWZ7gYtZIMWfE-Bo-oAOus4OEKf9vZUSpaxUldGXf6H_7m51oFqbGwiDj7muy6OB_E1xAB_y_iWvsgc45TwnvDpKyMwIv8fWTohm_fXLf7Cfjll-YF2KiAn83atQYvYOvL2-2TvQzA7Mac_vv-hd0q3l2A1jjtYq</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Young, Jonathan T</creator><creator>Hatakeyama, Tetsuhiro S</creator><creator>Kaneko, Kunihiko</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170301</creationdate><title>Dynamics robustness of cascading systems</title><author>Young, Jonathan T ; Hatakeyama, Tetsuhiro S ; Kaneko, Kunihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-300606f1c7afdb185f03cc617f5e2b75e5a74f15712abbff58772f75314efa1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biological research</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Cascades</topic><topic>Cell Physiological Phenomena</topic><topic>Computer and Information Sciences</topic><topic>Computer Simulation</topic><topic>Constraining</topic><topic>Dynamic systems theory</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Funding</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Information processing</topic><topic>Initial conditions</topic><topic>Kinases</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Models, Biological</topic><topic>Modules</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Phosphatase</topic><topic>Physical Sciences</topic><topic>Proteome - metabolism</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Robustness</topic><topic>Signal transduction</topic><topic>Signal Transduction - physiology</topic><topic>System theory</topic><topic>Upstream</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Jonathan T</creatorcontrib><creatorcontrib>Hatakeyama, Tetsuhiro S</creatorcontrib><creatorcontrib>Kaneko, Kunihiko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Jonathan T</au><au>Hatakeyama, Tetsuhiro S</au><au>Kaneko, Kunihiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics robustness of cascading systems</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>13</volume><issue>3</issue><spage>e1005434</spage><epage>e1005434</epage><pages>e1005434-e1005434</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1) Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2) Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it will provide a general basis for how biological systems function dynamically.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28288155</pmid><doi>10.1371/journal.pcbi.1005434</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2017-03, Vol.13 (3), p.e1005434-e1005434
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1888661405
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Biological research
Biology
Biology and Life Sciences
Cascades
Cell Physiological Phenomena
Computer and Information Sciences
Computer Simulation
Constraining
Dynamic systems theory
Dynamical systems
Dynamics
Funding
Homeostasis
Humans
Information processing
Initial conditions
Kinases
Kinetics
Mathematical models
Methods
Models, Biological
Modules
Multienzyme Complexes - metabolism
Phosphatase
Physical Sciences
Proteome - metabolism
R&D
Research & development
Robustness
Signal transduction
Signal Transduction - physiology
System theory
Upstream
title Dynamics robustness of cascading systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A33%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20robustness%20of%20cascading%20systems&rft.jtitle=PLoS%20computational%20biology&rft.au=Young,%20Jonathan%20T&rft.date=2017-03-01&rft.volume=13&rft.issue=3&rft.spage=e1005434&rft.epage=e1005434&rft.pages=e1005434-e1005434&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1005434&rft_dat=%3Cgale_plos_%3EA493714144%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1888661405&rft_id=info:pmid/28288155&rft_galeid=A493714144&rft_doaj_id=oai_doaj_org_article_318d3e8c6a874bf38c6020ec9720e2c8&rfr_iscdi=true