Dynamics robustness of cascading systems
A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robust...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2017-03, Vol.13 (3), p.e1005434-e1005434 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1005434 |
---|---|
container_issue | 3 |
container_start_page | e1005434 |
container_title | PLoS computational biology |
container_volume | 13 |
creator | Young, Jonathan T Hatakeyama, Tetsuhiro S Kaneko, Kunihiko |
description | A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1) Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2) Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it will provide a general basis for how biological systems function dynamically. |
doi_str_mv | 10.1371/journal.pcbi.1005434 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1888661405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A493714144</galeid><doaj_id>oai_doaj_org_article_318d3e8c6a874bf38c6020ec9720e2c8</doaj_id><sourcerecordid>A493714144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-300606f1c7afdb185f03cc617f5e2b75e5a74f15712abbff58772f75314efa1e3</originalsourceid><addsrcrecordid>eNqVkluL1DAUx4so7kW_geiAL-vDjElz7YuwrLeBRcHLc0jTk5qhbcacVpxvvxmnu-yILxJIDsnv_E9O8i-KZ5SsKFP09SZOabDdauvqsKKECM74g-KUCsGWign98F58UpwhbgjJYSUfFyelLrXOp6fFxdvdYPvgcJFiPeE4AOIi-oWz6GwThnaBOxyhxyfFI287hKfzel58f__u29XH5fXnD-ury-ulk4yNS0aIJNJTp6xvaqqFJ8w5SZUXUNZKgLCKeyoULW1dey-0UqVXglEO3lJg58WLg-62i2jmJtFQrbWUlBORifWBaKLdmG0KvU07E20wfzZiao1NY3AdGEZ1w0A7abXitWc5IiUBV6k8l05nrTdztanuoXEwjMl2R6LHJ0P4Ydr4ywgmlWZ7gYtZIMWfE-Bo-oAOus4OEKf9vZUSpaxUldGXf6H_7m51oFqbGwiDj7muy6OB_E1xAB_y_iWvsgc45TwnvDpKyMwIv8fWTohm_fXLf7Cfjll-YF2KiAn83atQYvYOvL2-2TvQzA7Mac_vv-hd0q3l2A1jjtYq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1888661405</pqid></control><display><type>article</type><title>Dynamics robustness of cascading systems</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Young, Jonathan T ; Hatakeyama, Tetsuhiro S ; Kaneko, Kunihiko</creator><creatorcontrib>Young, Jonathan T ; Hatakeyama, Tetsuhiro S ; Kaneko, Kunihiko</creatorcontrib><description>A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1) Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2) Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it will provide a general basis for how biological systems function dynamically.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1005434</identifier><identifier>PMID: 28288155</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biological research ; Biology ; Biology and Life Sciences ; Cascades ; Cell Physiological Phenomena ; Computer and Information Sciences ; Computer Simulation ; Constraining ; Dynamic systems theory ; Dynamical systems ; Dynamics ; Funding ; Homeostasis ; Humans ; Information processing ; Initial conditions ; Kinases ; Kinetics ; Mathematical models ; Methods ; Models, Biological ; Modules ; Multienzyme Complexes - metabolism ; Phosphatase ; Physical Sciences ; Proteome - metabolism ; R&D ; Research & development ; Robustness ; Signal transduction ; Signal Transduction - physiology ; System theory ; Upstream</subject><ispartof>PLoS computational biology, 2017-03, Vol.13 (3), p.e1005434-e1005434</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Young JT, Hatakeyama TS, Kaneko K (2017) Dynamics robustness of cascading systems. PLoS Comput Biol 13(3): e1005434. https://doi.org/10.1371/journal.pcbi.1005434</rights><rights>2017 Young et al 2017 Young et al</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Young JT, Hatakeyama TS, Kaneko K (2017) Dynamics robustness of cascading systems. PLoS Comput Biol 13(3): e1005434. https://doi.org/10.1371/journal.pcbi.1005434</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-300606f1c7afdb185f03cc617f5e2b75e5a74f15712abbff58772f75314efa1e3</citedby><cites>FETCH-LOGICAL-c633t-300606f1c7afdb185f03cc617f5e2b75e5a74f15712abbff58772f75314efa1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5367838/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5367838/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28288155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Young, Jonathan T</creatorcontrib><creatorcontrib>Hatakeyama, Tetsuhiro S</creatorcontrib><creatorcontrib>Kaneko, Kunihiko</creatorcontrib><title>Dynamics robustness of cascading systems</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1) Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2) Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it will provide a general basis for how biological systems function dynamically.</description><subject>Animals</subject><subject>Biological research</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Cascades</subject><subject>Cell Physiological Phenomena</subject><subject>Computer and Information Sciences</subject><subject>Computer Simulation</subject><subject>Constraining</subject><subject>Dynamic systems theory</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Funding</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Information processing</subject><subject>Initial conditions</subject><subject>Kinases</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Models, Biological</subject><subject>Modules</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Phosphatase</subject><subject>Physical Sciences</subject><subject>Proteome - metabolism</subject><subject>R&D</subject><subject>Research & development</subject><subject>Robustness</subject><subject>Signal transduction</subject><subject>Signal Transduction - physiology</subject><subject>System theory</subject><subject>Upstream</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkluL1DAUx4so7kW_geiAL-vDjElz7YuwrLeBRcHLc0jTk5qhbcacVpxvvxmnu-yILxJIDsnv_E9O8i-KZ5SsKFP09SZOabDdauvqsKKECM74g-KUCsGWign98F58UpwhbgjJYSUfFyelLrXOp6fFxdvdYPvgcJFiPeE4AOIi-oWz6GwThnaBOxyhxyfFI287hKfzel58f__u29XH5fXnD-ury-ulk4yNS0aIJNJTp6xvaqqFJ8w5SZUXUNZKgLCKeyoULW1dey-0UqVXglEO3lJg58WLg-62i2jmJtFQrbWUlBORifWBaKLdmG0KvU07E20wfzZiao1NY3AdGEZ1w0A7abXitWc5IiUBV6k8l05nrTdztanuoXEwjMl2R6LHJ0P4Ydr4ywgmlWZ7gYtZIMWfE-Bo-oAOus4OEKf9vZUSpaxUldGXf6H_7m51oFqbGwiDj7muy6OB_E1xAB_y_iWvsgc45TwnvDpKyMwIv8fWTohm_fXLf7Cfjll-YF2KiAn83atQYvYOvL2-2TvQzA7Mac_vv-hd0q3l2A1jjtYq</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Young, Jonathan T</creator><creator>Hatakeyama, Tetsuhiro S</creator><creator>Kaneko, Kunihiko</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170301</creationdate><title>Dynamics robustness of cascading systems</title><author>Young, Jonathan T ; Hatakeyama, Tetsuhiro S ; Kaneko, Kunihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-300606f1c7afdb185f03cc617f5e2b75e5a74f15712abbff58772f75314efa1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biological research</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Cascades</topic><topic>Cell Physiological Phenomena</topic><topic>Computer and Information Sciences</topic><topic>Computer Simulation</topic><topic>Constraining</topic><topic>Dynamic systems theory</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Funding</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Information processing</topic><topic>Initial conditions</topic><topic>Kinases</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Models, Biological</topic><topic>Modules</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Phosphatase</topic><topic>Physical Sciences</topic><topic>Proteome - metabolism</topic><topic>R&D</topic><topic>Research & development</topic><topic>Robustness</topic><topic>Signal transduction</topic><topic>Signal Transduction - physiology</topic><topic>System theory</topic><topic>Upstream</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Jonathan T</creatorcontrib><creatorcontrib>Hatakeyama, Tetsuhiro S</creatorcontrib><creatorcontrib>Kaneko, Kunihiko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Jonathan T</au><au>Hatakeyama, Tetsuhiro S</au><au>Kaneko, Kunihiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics robustness of cascading systems</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>13</volume><issue>3</issue><spage>e1005434</spage><epage>e1005434</epage><pages>e1005434-e1005434</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1) Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2) Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it will provide a general basis for how biological systems function dynamically.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28288155</pmid><doi>10.1371/journal.pcbi.1005434</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2017-03, Vol.13 (3), p.e1005434-e1005434 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1888661405 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Biological research Biology Biology and Life Sciences Cascades Cell Physiological Phenomena Computer and Information Sciences Computer Simulation Constraining Dynamic systems theory Dynamical systems Dynamics Funding Homeostasis Humans Information processing Initial conditions Kinases Kinetics Mathematical models Methods Models, Biological Modules Multienzyme Complexes - metabolism Phosphatase Physical Sciences Proteome - metabolism R&D Research & development Robustness Signal transduction Signal Transduction - physiology System theory Upstream |
title | Dynamics robustness of cascading systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A33%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20robustness%20of%20cascading%20systems&rft.jtitle=PLoS%20computational%20biology&rft.au=Young,%20Jonathan%20T&rft.date=2017-03-01&rft.volume=13&rft.issue=3&rft.spage=e1005434&rft.epage=e1005434&rft.pages=e1005434-e1005434&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1005434&rft_dat=%3Cgale_plos_%3EA493714144%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1888661405&rft_id=info:pmid/28288155&rft_galeid=A493714144&rft_doaj_id=oai_doaj_org_article_318d3e8c6a874bf38c6020ec9720e2c8&rfr_iscdi=true |