Fast growth conditions uncouple the final stages of chromosome segregation and cell division in Escherichia coli
Homologous recombination between the circular chromosomes of bacteria can generate chromosome dimers. They are resolved by a recombination event at a specific site in the replication terminus of chromosomes, dif, by dedicated tyrosine recombinases. The reaction is under the control of a cell divisio...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2017-03, Vol.13 (3), p.e1006702-e1006702 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1006702 |
---|---|
container_issue | 3 |
container_start_page | e1006702 |
container_title | PLoS genetics |
container_volume | 13 |
creator | Galli, Elisa Midonet, Caroline Paly, Evelyne Barre, François-Xavier |
description | Homologous recombination between the circular chromosomes of bacteria can generate chromosome dimers. They are resolved by a recombination event at a specific site in the replication terminus of chromosomes, dif, by dedicated tyrosine recombinases. The reaction is under the control of a cell division protein, FtsK, which assembles into active DNA pumps at mid-cell during septum formation. Previous studies suggested that activation of Xer recombination at dif was restricted to chromosome dimers in Escherichia coli but not in Vibrio cholerae, suggesting that FtsK mainly acted on chromosome dimers in E. coli but frequently processed monomeric chromosomes in V. cholerae. However, recent microscopic studies suggested that E. coli FtsK served to release the MatP-mediated cohesion and/or cell division apparatus-interaction of sister copies of the dif region independently of chromosome dimer formation. Here, we show that these apparently paradoxical observations are not linked to any difference in the dimer resolution machineries of E. coli and V. cholerae but to differences in the timing of segregation of their chromosomes. V. cholerae harbours two circular chromosomes, chr1 and chr2. We found that whatever the growth conditions, sister copies of the V. cholerae chr1 dif region remain together at mid-cell until the onset of constriction, which permits their processing by FtsK and the activation of dif-recombination. Likewise, sister copies of the dif region of the E. coli chromosome only separate after the onset of constriction in slow growth conditions. However, under fast growth conditions the dif sites separate before constriction, which restricts XerCD-dif activity to resolving chromosome dimers. |
doi_str_mv | 10.1371/journal.pgen.1006702 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1888656413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A493759132</galeid><doaj_id>oai_doaj_org_article_c91eb5f0d4f341a4b9c8403be86de6c5</doaj_id><sourcerecordid>A493759132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c811t-ad059c5587a78e95a078dcc72ab8201457885ba759be5143859aa4a0f5bce633</originalsourceid><addsrcrecordid>eNqVk1Fr2zAQx83YWLtu32BsgsFYH5JJlhXLL4NQ2jUQVtjKXsVZPtsKjpVKdrZ9-8mJW5LShw1hJM6___-kky6K3jI6ZTxln1e2dy00002F7ZRROktp_Cw6ZULwSZrQ5PnB-iR65f2KUi5klr6MTmIZVuE7jTZX4DtSOfurq4m2bWE6Y1tP-lbbftMg6WokpQmJiO-gQk9sSXTt7Np6u0bisXJYwSAi0BZEY9OQwmyNHyKmJZde1-iMrg0E_8a8jl6U0Hh8M85n0e3V5e3F9WR583VxMV9OtGSsm0BBRaaFkCmkEjMBNJWF1mkMuYwpS0QqpcghFVmOgiVcigwgAVqKXOOM87Po_d5201ivxlp5xaSUMzFL2EAs9kRhYaU2zqzB_VEWjNoFrKsUuM7oBpXOGOaipEVS8oRBkmdaJpTnKGcFzrQIXl_GbH2-xkJj2zlojkyP_7SmVpXdKsEzxuIsGJzvDepHsuv5Ug0xGrNMUMG3LLCfxmTO3vXoO7U2fqg7tGj73Rk5S2Uqhn19eIQ-XYmRqiAc1rSlDXvUg6maJxkPNWY8DtT0CSqMAtcmvBwsTYgfCc6PBIHp8HdXQe-9Wvz4_h_st39nb34esx8P2Bqh6Wpvm373yI_BZA9qZ713WD7cAqNq6Lf7yqmh39TYb0H27vDiH0T3Dcb_Ag44JJ4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1888656413</pqid></control><display><type>article</type><title>Fast growth conditions uncouple the final stages of chromosome segregation and cell division in Escherichia coli</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Galli, Elisa ; Midonet, Caroline ; Paly, Evelyne ; Barre, François-Xavier</creator><contributor>Burkholder, William F.</contributor><creatorcontrib>Galli, Elisa ; Midonet, Caroline ; Paly, Evelyne ; Barre, François-Xavier ; Burkholder, William F.</creatorcontrib><description>Homologous recombination between the circular chromosomes of bacteria can generate chromosome dimers. They are resolved by a recombination event at a specific site in the replication terminus of chromosomes, dif, by dedicated tyrosine recombinases. The reaction is under the control of a cell division protein, FtsK, which assembles into active DNA pumps at mid-cell during septum formation. Previous studies suggested that activation of Xer recombination at dif was restricted to chromosome dimers in Escherichia coli but not in Vibrio cholerae, suggesting that FtsK mainly acted on chromosome dimers in E. coli but frequently processed monomeric chromosomes in V. cholerae. However, recent microscopic studies suggested that E. coli FtsK served to release the MatP-mediated cohesion and/or cell division apparatus-interaction of sister copies of the dif region independently of chromosome dimer formation. Here, we show that these apparently paradoxical observations are not linked to any difference in the dimer resolution machineries of E. coli and V. cholerae but to differences in the timing of segregation of their chromosomes. V. cholerae harbours two circular chromosomes, chr1 and chr2. We found that whatever the growth conditions, sister copies of the V. cholerae chr1 dif region remain together at mid-cell until the onset of constriction, which permits their processing by FtsK and the activation of dif-recombination. Likewise, sister copies of the dif region of the E. coli chromosome only separate after the onset of constriction in slow growth conditions. However, under fast growth conditions the dif sites separate before constriction, which restricts XerCD-dif activity to resolving chromosome dimers.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1006702</identifier><identifier>PMID: 28358835</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bacteria ; Biology ; Biology and Life Sciences ; Cell cycle ; Cell Cycle - genetics ; Cell division ; Cell Division - genetics ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomes ; Chromosomes, Bacterial - genetics ; Deoxyribonucleic acid ; DNA ; DNA synthesis ; DNA, Circular - genetics ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - growth & development ; Escherichia coli Proteins - genetics ; Eukaryotes ; Genetic aspects ; Growth conditions ; Homologous recombination ; Homologous Recombination - genetics ; Integrases - genetics ; Life Sciences ; Medicine and Health Sciences ; Membrane Proteins - genetics ; Monomers ; Optical Imaging ; Physical sciences ; Recombinases - genetics ; Research and Analysis Methods ; Septum ; Studies ; Tyrosine ; Vibrio cholerae - genetics ; Vibrio cholerae - growth & development</subject><ispartof>PLoS genetics, 2017-03, Vol.13 (3), p.e1006702-e1006702</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Genet 13(3): e1006702. https://doi.org/10.1371/journal.pgen.1006702</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2017 Galli et al 2017 Galli et al</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Genet 13(3): e1006702. https://doi.org/10.1371/journal.pgen.1006702</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c811t-ad059c5587a78e95a078dcc72ab8201457885ba759be5143859aa4a0f5bce633</citedby><cites>FETCH-LOGICAL-c811t-ad059c5587a78e95a078dcc72ab8201457885ba759be5143859aa4a0f5bce633</cites><orcidid>0000-0003-4050-4273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391129/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391129/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28358835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02195053$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Burkholder, William F.</contributor><creatorcontrib>Galli, Elisa</creatorcontrib><creatorcontrib>Midonet, Caroline</creatorcontrib><creatorcontrib>Paly, Evelyne</creatorcontrib><creatorcontrib>Barre, François-Xavier</creatorcontrib><title>Fast growth conditions uncouple the final stages of chromosome segregation and cell division in Escherichia coli</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Homologous recombination between the circular chromosomes of bacteria can generate chromosome dimers. They are resolved by a recombination event at a specific site in the replication terminus of chromosomes, dif, by dedicated tyrosine recombinases. The reaction is under the control of a cell division protein, FtsK, which assembles into active DNA pumps at mid-cell during septum formation. Previous studies suggested that activation of Xer recombination at dif was restricted to chromosome dimers in Escherichia coli but not in Vibrio cholerae, suggesting that FtsK mainly acted on chromosome dimers in E. coli but frequently processed monomeric chromosomes in V. cholerae. However, recent microscopic studies suggested that E. coli FtsK served to release the MatP-mediated cohesion and/or cell division apparatus-interaction of sister copies of the dif region independently of chromosome dimer formation. Here, we show that these apparently paradoxical observations are not linked to any difference in the dimer resolution machineries of E. coli and V. cholerae but to differences in the timing of segregation of their chromosomes. V. cholerae harbours two circular chromosomes, chr1 and chr2. We found that whatever the growth conditions, sister copies of the V. cholerae chr1 dif region remain together at mid-cell until the onset of constriction, which permits their processing by FtsK and the activation of dif-recombination. Likewise, sister copies of the dif region of the E. coli chromosome only separate after the onset of constriction in slow growth conditions. However, under fast growth conditions the dif sites separate before constriction, which restricts XerCD-dif activity to resolving chromosome dimers.</description><subject>Bacteria</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Cell cycle</subject><subject>Cell Cycle - genetics</subject><subject>Cell division</subject><subject>Cell Division - genetics</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomes</subject><subject>Chromosomes, Bacterial - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA synthesis</subject><subject>DNA, Circular - genetics</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - growth & development</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Eukaryotes</subject><subject>Genetic aspects</subject><subject>Growth conditions</subject><subject>Homologous recombination</subject><subject>Homologous Recombination - genetics</subject><subject>Integrases - genetics</subject><subject>Life Sciences</subject><subject>Medicine and Health Sciences</subject><subject>Membrane Proteins - genetics</subject><subject>Monomers</subject><subject>Optical Imaging</subject><subject>Physical sciences</subject><subject>Recombinases - genetics</subject><subject>Research and Analysis Methods</subject><subject>Septum</subject><subject>Studies</subject><subject>Tyrosine</subject><subject>Vibrio cholerae - genetics</subject><subject>Vibrio cholerae - growth & development</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk1Fr2zAQx83YWLtu32BsgsFYH5JJlhXLL4NQ2jUQVtjKXsVZPtsKjpVKdrZ9-8mJW5LShw1hJM6___-kky6K3jI6ZTxln1e2dy00002F7ZRROktp_Cw6ZULwSZrQ5PnB-iR65f2KUi5klr6MTmIZVuE7jTZX4DtSOfurq4m2bWE6Y1tP-lbbftMg6WokpQmJiO-gQk9sSXTt7Np6u0bisXJYwSAi0BZEY9OQwmyNHyKmJZde1-iMrg0E_8a8jl6U0Hh8M85n0e3V5e3F9WR583VxMV9OtGSsm0BBRaaFkCmkEjMBNJWF1mkMuYwpS0QqpcghFVmOgiVcigwgAVqKXOOM87Po_d5201ivxlp5xaSUMzFL2EAs9kRhYaU2zqzB_VEWjNoFrKsUuM7oBpXOGOaipEVS8oRBkmdaJpTnKGcFzrQIXl_GbH2-xkJj2zlojkyP_7SmVpXdKsEzxuIsGJzvDepHsuv5Ug0xGrNMUMG3LLCfxmTO3vXoO7U2fqg7tGj73Rk5S2Uqhn19eIQ-XYmRqiAc1rSlDXvUg6maJxkPNWY8DtT0CSqMAtcmvBwsTYgfCc6PBIHp8HdXQe-9Wvz4_h_st39nb34esx8P2Bqh6Wpvm373yI_BZA9qZ713WD7cAqNq6Lf7yqmh39TYb0H27vDiH0T3Dcb_Ag44JJ4</recordid><startdate>20170330</startdate><enddate>20170330</enddate><creator>Galli, Elisa</creator><creator>Midonet, Caroline</creator><creator>Paly, Evelyne</creator><creator>Barre, François-Xavier</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4050-4273</orcidid></search><sort><creationdate>20170330</creationdate><title>Fast growth conditions uncouple the final stages of chromosome segregation and cell division in Escherichia coli</title><author>Galli, Elisa ; Midonet, Caroline ; Paly, Evelyne ; Barre, François-Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c811t-ad059c5587a78e95a078dcc72ab8201457885ba759be5143859aa4a0f5bce633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Cell cycle</topic><topic>Cell Cycle - genetics</topic><topic>Cell division</topic><topic>Cell Division - genetics</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomes</topic><topic>Chromosomes, Bacterial - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA synthesis</topic><topic>DNA, Circular - genetics</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - growth & development</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Eukaryotes</topic><topic>Genetic aspects</topic><topic>Growth conditions</topic><topic>Homologous recombination</topic><topic>Homologous Recombination - genetics</topic><topic>Integrases - genetics</topic><topic>Life Sciences</topic><topic>Medicine and Health Sciences</topic><topic>Membrane Proteins - genetics</topic><topic>Monomers</topic><topic>Optical Imaging</topic><topic>Physical sciences</topic><topic>Recombinases - genetics</topic><topic>Research and Analysis Methods</topic><topic>Septum</topic><topic>Studies</topic><topic>Tyrosine</topic><topic>Vibrio cholerae - genetics</topic><topic>Vibrio cholerae - growth & development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galli, Elisa</creatorcontrib><creatorcontrib>Midonet, Caroline</creatorcontrib><creatorcontrib>Paly, Evelyne</creatorcontrib><creatorcontrib>Barre, François-Xavier</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galli, Elisa</au><au>Midonet, Caroline</au><au>Paly, Evelyne</au><au>Barre, François-Xavier</au><au>Burkholder, William F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast growth conditions uncouple the final stages of chromosome segregation and cell division in Escherichia coli</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2017-03-30</date><risdate>2017</risdate><volume>13</volume><issue>3</issue><spage>e1006702</spage><epage>e1006702</epage><pages>e1006702-e1006702</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Homologous recombination between the circular chromosomes of bacteria can generate chromosome dimers. They are resolved by a recombination event at a specific site in the replication terminus of chromosomes, dif, by dedicated tyrosine recombinases. The reaction is under the control of a cell division protein, FtsK, which assembles into active DNA pumps at mid-cell during septum formation. Previous studies suggested that activation of Xer recombination at dif was restricted to chromosome dimers in Escherichia coli but not in Vibrio cholerae, suggesting that FtsK mainly acted on chromosome dimers in E. coli but frequently processed monomeric chromosomes in V. cholerae. However, recent microscopic studies suggested that E. coli FtsK served to release the MatP-mediated cohesion and/or cell division apparatus-interaction of sister copies of the dif region independently of chromosome dimer formation. Here, we show that these apparently paradoxical observations are not linked to any difference in the dimer resolution machineries of E. coli and V. cholerae but to differences in the timing of segregation of their chromosomes. V. cholerae harbours two circular chromosomes, chr1 and chr2. We found that whatever the growth conditions, sister copies of the V. cholerae chr1 dif region remain together at mid-cell until the onset of constriction, which permits their processing by FtsK and the activation of dif-recombination. Likewise, sister copies of the dif region of the E. coli chromosome only separate after the onset of constriction in slow growth conditions. However, under fast growth conditions the dif sites separate before constriction, which restricts XerCD-dif activity to resolving chromosome dimers.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28358835</pmid><doi>10.1371/journal.pgen.1006702</doi><orcidid>https://orcid.org/0000-0003-4050-4273</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2017-03, Vol.13 (3), p.e1006702-e1006702 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1888656413 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Bacteria Biology Biology and Life Sciences Cell cycle Cell Cycle - genetics Cell division Cell Division - genetics Chromosomal Proteins, Non-Histone - genetics Chromosomes Chromosomes, Bacterial - genetics Deoxyribonucleic acid DNA DNA synthesis DNA, Circular - genetics E coli Escherichia coli Escherichia coli - genetics Escherichia coli - growth & development Escherichia coli Proteins - genetics Eukaryotes Genetic aspects Growth conditions Homologous recombination Homologous Recombination - genetics Integrases - genetics Life Sciences Medicine and Health Sciences Membrane Proteins - genetics Monomers Optical Imaging Physical sciences Recombinases - genetics Research and Analysis Methods Septum Studies Tyrosine Vibrio cholerae - genetics Vibrio cholerae - growth & development |
title | Fast growth conditions uncouple the final stages of chromosome segregation and cell division in Escherichia coli |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20growth%20conditions%20uncouple%20the%20final%20stages%20of%20chromosome%20segregation%20and%20cell%20division%20in%20Escherichia%20coli&rft.jtitle=PLoS%20genetics&rft.au=Galli,%20Elisa&rft.date=2017-03-30&rft.volume=13&rft.issue=3&rft.spage=e1006702&rft.epage=e1006702&rft.pages=e1006702-e1006702&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1006702&rft_dat=%3Cgale_plos_%3EA493759132%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1888656413&rft_id=info:pmid/28358835&rft_galeid=A493759132&rft_doaj_id=oai_doaj_org_article_c91eb5f0d4f341a4b9c8403be86de6c5&rfr_iscdi=true |