Experimental and mathematical analysis of cAMP nanodomains

In their role as second messengers, cyclic nucleotides such as cAMP have a variety of intracellular effects. These complex tasks demand a highly organized orchestration of spatially and temporally confined cAMP action which should be best achieved by compartmentalization of the latter. A great body...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-04, Vol.12 (4), p.e0174856
Hauptverfasser: Lohse, Christian, Bock, Andreas, Maiellaro, Isabella, Hannawacker, Annette, Schad, Lothar R, Lohse, Martin J, Bauer, Wolfgang R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page e0174856
container_title PloS one
container_volume 12
creator Lohse, Christian
Bock, Andreas
Maiellaro, Isabella
Hannawacker, Annette
Schad, Lothar R
Lohse, Martin J
Bauer, Wolfgang R
description In their role as second messengers, cyclic nucleotides such as cAMP have a variety of intracellular effects. These complex tasks demand a highly organized orchestration of spatially and temporally confined cAMP action which should be best achieved by compartmentalization of the latter. A great body of evidence suggests that cAMP compartments may be established and maintained by cAMP degrading enzymes, e.g. phosphodiesterases (PDEs). However, the molecular and biophysical details of how PDEs can orchestrate cAMP gradients are entirely unclear. In this paper, using fusion proteins of cAMP FRET-sensors and PDEs in living cells, we provide direct experimental evidence that the cAMP concentration in the vicinity of an individual PDE molecule is below the detection limit of our FRET sensors (
doi_str_mv 10.1371/journal.pone.0174856
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1887369635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A489519634</galeid><doaj_id>oai_doaj_org_article_9fc86554b8234785ba21819a6abe0fea</doaj_id><sourcerecordid>A489519634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-19e40becf7c8bd014d3b1f0f453981696b512970d4636d6d645ecb522ea42c523</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK3-A9EFoeDFrvmejBfCUqouVCp-3YYzmcxulplkncyU9t972p2WHVCQQBJOnvdNzsnJspeULCjP6bttHLoAzWIXg1sQmgst1aPsmBaczRUj_PHB_ih7ltKWEMm1Uk-zI6YFUQUjx9n78-ud63zrQg_NDEI1a6HfOJy8vQtAc5N8msV6Zpdfvs4ChFjFFnxIz7MnNTTJvRjXk-znx_MfZ5_nF5efVmfLi7nFK_o5LZwgpbN1bnVZESoqXtKa1ELyQlNVqFJSVuSkEoqrCoeQzpaSMQeCWcn4SfZ677trYjJj2slQrXOOci6RWO2JKsLW7DAd6G5MBG_uArFbG-gwocaZorZaSSlKzbjItSyBUU0LUFA6UjtArw_jbUPZuspiYTpoJqbTk-A3Zh2vDKZDCVVo8GY06OLvwaX-H08eqTXgq3yoI5rZ1idrlkIXkiIlkFr8hcJRudZb_PjaY3wieDsRINO7634NQ0pm9f3b_7OXv6bs6QG7cdD0mxSbofcxpCko9qDtYkqdqx8qR4m57dv7apjbvjVj36Ls1WHVH0T3jcr_AJDs5uo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1887369635</pqid></control><display><type>article</type><title>Experimental and mathematical analysis of cAMP nanodomains</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lohse, Christian ; Bock, Andreas ; Maiellaro, Isabella ; Hannawacker, Annette ; Schad, Lothar R ; Lohse, Martin J ; Bauer, Wolfgang R</creator><contributor>Tasken, Kjetil</contributor><creatorcontrib>Lohse, Christian ; Bock, Andreas ; Maiellaro, Isabella ; Hannawacker, Annette ; Schad, Lothar R ; Lohse, Martin J ; Bauer, Wolfgang R ; Tasken, Kjetil</creatorcontrib><description>In their role as second messengers, cyclic nucleotides such as cAMP have a variety of intracellular effects. These complex tasks demand a highly organized orchestration of spatially and temporally confined cAMP action which should be best achieved by compartmentalization of the latter. A great body of evidence suggests that cAMP compartments may be established and maintained by cAMP degrading enzymes, e.g. phosphodiesterases (PDEs). However, the molecular and biophysical details of how PDEs can orchestrate cAMP gradients are entirely unclear. In this paper, using fusion proteins of cAMP FRET-sensors and PDEs in living cells, we provide direct experimental evidence that the cAMP concentration in the vicinity of an individual PDE molecule is below the detection limit of our FRET sensors (&lt;100nM). This cAMP gradient persists in crude cytosol preparations. We developed mathematical models based on diffusion-reaction equations which describe the creation of nanocompartments around a single PDE molecule and more complex spatial PDE arrangements. The analytically solvable equations derived here explicitly determine how the capability of a single PDE, or PDE complexes, to create a nanocompartment depend on the cAMP degradation rate, the diffusive mobility of cAMP, and geometrical and topological parameters. We apply these generic models to our experimental data and determine the diffusive mobility and degradation rate of cAMP. The results obtained for these parameters differ by far from data in literature for free soluble cAMP interacting with PDE. Hence, restricted cAMP diffusion in the vincinity of PDE is necessary to create cAMP nanocompartments in cells.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0174856</identifier><identifier>PMID: 28406920</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Camps ; Cell Line ; Cells (biology) ; Clinical medicine ; Compartments ; Cyclic adenosine monophosphate ; Cyclic AMP ; Cyclic AMP - metabolism ; Cyclic nucleotides ; Cytosol ; Cytosol - metabolism ; Degradation ; Diffusion ; Enzymes ; Fluorescence resonance energy transfer ; Fretting ; Heart failure ; Humans ; Interdisciplinary aspects ; Kinases ; Mathematical models ; Medicine ; Medicine and Health Sciences ; Mobility ; Models, Biological ; Nanostructure ; Nucleotides ; Numerical analysis ; Pharmacology ; Phosphoric Diester Hydrolases - metabolism ; Physical Sciences ; Physiological aspects ; Proteins ; Reaction-diffusion equations ; Research and Analysis Methods ; Second messengers ; Sensors ; Structure ; Studies ; Task complexity ; Toxicology</subject><ispartof>PloS one, 2017-04, Vol.12 (4), p.e0174856</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Lohse et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Lohse et al 2017 Lohse et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-19e40becf7c8bd014d3b1f0f453981696b512970d4636d6d645ecb522ea42c523</citedby><cites>FETCH-LOGICAL-c692t-19e40becf7c8bd014d3b1f0f453981696b512970d4636d6d645ecb522ea42c523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391016/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391016/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28406920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Tasken, Kjetil</contributor><creatorcontrib>Lohse, Christian</creatorcontrib><creatorcontrib>Bock, Andreas</creatorcontrib><creatorcontrib>Maiellaro, Isabella</creatorcontrib><creatorcontrib>Hannawacker, Annette</creatorcontrib><creatorcontrib>Schad, Lothar R</creatorcontrib><creatorcontrib>Lohse, Martin J</creatorcontrib><creatorcontrib>Bauer, Wolfgang R</creatorcontrib><title>Experimental and mathematical analysis of cAMP nanodomains</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In their role as second messengers, cyclic nucleotides such as cAMP have a variety of intracellular effects. These complex tasks demand a highly organized orchestration of spatially and temporally confined cAMP action which should be best achieved by compartmentalization of the latter. A great body of evidence suggests that cAMP compartments may be established and maintained by cAMP degrading enzymes, e.g. phosphodiesterases (PDEs). However, the molecular and biophysical details of how PDEs can orchestrate cAMP gradients are entirely unclear. In this paper, using fusion proteins of cAMP FRET-sensors and PDEs in living cells, we provide direct experimental evidence that the cAMP concentration in the vicinity of an individual PDE molecule is below the detection limit of our FRET sensors (&lt;100nM). This cAMP gradient persists in crude cytosol preparations. We developed mathematical models based on diffusion-reaction equations which describe the creation of nanocompartments around a single PDE molecule and more complex spatial PDE arrangements. The analytically solvable equations derived here explicitly determine how the capability of a single PDE, or PDE complexes, to create a nanocompartment depend on the cAMP degradation rate, the diffusive mobility of cAMP, and geometrical and topological parameters. We apply these generic models to our experimental data and determine the diffusive mobility and degradation rate of cAMP. The results obtained for these parameters differ by far from data in literature for free soluble cAMP interacting with PDE. Hence, restricted cAMP diffusion in the vincinity of PDE is necessary to create cAMP nanocompartments in cells.</description><subject>Biology and Life Sciences</subject><subject>Camps</subject><subject>Cell Line</subject><subject>Cells (biology)</subject><subject>Clinical medicine</subject><subject>Compartments</subject><subject>Cyclic adenosine monophosphate</subject><subject>Cyclic AMP</subject><subject>Cyclic AMP - metabolism</subject><subject>Cyclic nucleotides</subject><subject>Cytosol</subject><subject>Cytosol - metabolism</subject><subject>Degradation</subject><subject>Diffusion</subject><subject>Enzymes</subject><subject>Fluorescence resonance energy transfer</subject><subject>Fretting</subject><subject>Heart failure</subject><subject>Humans</subject><subject>Interdisciplinary aspects</subject><subject>Kinases</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Mobility</subject><subject>Models, Biological</subject><subject>Nanostructure</subject><subject>Nucleotides</subject><subject>Numerical analysis</subject><subject>Pharmacology</subject><subject>Phosphoric Diester Hydrolases - metabolism</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Reaction-diffusion equations</subject><subject>Research and Analysis Methods</subject><subject>Second messengers</subject><subject>Sensors</subject><subject>Structure</subject><subject>Studies</subject><subject>Task complexity</subject><subject>Toxicology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRbK3-A9EFoeDFrvmejBfCUqouVCp-3YYzmcxulplkncyU9t972p2WHVCQQBJOnvdNzsnJspeULCjP6bttHLoAzWIXg1sQmgst1aPsmBaczRUj_PHB_ih7ltKWEMm1Uk-zI6YFUQUjx9n78-ud63zrQg_NDEI1a6HfOJy8vQtAc5N8msV6Zpdfvs4ChFjFFnxIz7MnNTTJvRjXk-znx_MfZ5_nF5efVmfLi7nFK_o5LZwgpbN1bnVZESoqXtKa1ELyQlNVqFJSVuSkEoqrCoeQzpaSMQeCWcn4SfZ677trYjJj2slQrXOOci6RWO2JKsLW7DAd6G5MBG_uArFbG-gwocaZorZaSSlKzbjItSyBUU0LUFA6UjtArw_jbUPZuspiYTpoJqbTk-A3Zh2vDKZDCVVo8GY06OLvwaX-H08eqTXgq3yoI5rZ1idrlkIXkiIlkFr8hcJRudZb_PjaY3wieDsRINO7634NQ0pm9f3b_7OXv6bs6QG7cdD0mxSbofcxpCko9qDtYkqdqx8qR4m57dv7apjbvjVj36Ls1WHVH0T3jcr_AJDs5uo</recordid><startdate>20170413</startdate><enddate>20170413</enddate><creator>Lohse, Christian</creator><creator>Bock, Andreas</creator><creator>Maiellaro, Isabella</creator><creator>Hannawacker, Annette</creator><creator>Schad, Lothar R</creator><creator>Lohse, Martin J</creator><creator>Bauer, Wolfgang R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170413</creationdate><title>Experimental and mathematical analysis of cAMP nanodomains</title><author>Lohse, Christian ; Bock, Andreas ; Maiellaro, Isabella ; Hannawacker, Annette ; Schad, Lothar R ; Lohse, Martin J ; Bauer, Wolfgang R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-19e40becf7c8bd014d3b1f0f453981696b512970d4636d6d645ecb522ea42c523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biology and Life Sciences</topic><topic>Camps</topic><topic>Cell Line</topic><topic>Cells (biology)</topic><topic>Clinical medicine</topic><topic>Compartments</topic><topic>Cyclic adenosine monophosphate</topic><topic>Cyclic AMP</topic><topic>Cyclic AMP - metabolism</topic><topic>Cyclic nucleotides</topic><topic>Cytosol</topic><topic>Cytosol - metabolism</topic><topic>Degradation</topic><topic>Diffusion</topic><topic>Enzymes</topic><topic>Fluorescence resonance energy transfer</topic><topic>Fretting</topic><topic>Heart failure</topic><topic>Humans</topic><topic>Interdisciplinary aspects</topic><topic>Kinases</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Mobility</topic><topic>Models, Biological</topic><topic>Nanostructure</topic><topic>Nucleotides</topic><topic>Numerical analysis</topic><topic>Pharmacology</topic><topic>Phosphoric Diester Hydrolases - metabolism</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Reaction-diffusion equations</topic><topic>Research and Analysis Methods</topic><topic>Second messengers</topic><topic>Sensors</topic><topic>Structure</topic><topic>Studies</topic><topic>Task complexity</topic><topic>Toxicology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lohse, Christian</creatorcontrib><creatorcontrib>Bock, Andreas</creatorcontrib><creatorcontrib>Maiellaro, Isabella</creatorcontrib><creatorcontrib>Hannawacker, Annette</creatorcontrib><creatorcontrib>Schad, Lothar R</creatorcontrib><creatorcontrib>Lohse, Martin J</creatorcontrib><creatorcontrib>Bauer, Wolfgang R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lohse, Christian</au><au>Bock, Andreas</au><au>Maiellaro, Isabella</au><au>Hannawacker, Annette</au><au>Schad, Lothar R</au><au>Lohse, Martin J</au><au>Bauer, Wolfgang R</au><au>Tasken, Kjetil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and mathematical analysis of cAMP nanodomains</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-04-13</date><risdate>2017</risdate><volume>12</volume><issue>4</issue><spage>e0174856</spage><pages>e0174856-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In their role as second messengers, cyclic nucleotides such as cAMP have a variety of intracellular effects. These complex tasks demand a highly organized orchestration of spatially and temporally confined cAMP action which should be best achieved by compartmentalization of the latter. A great body of evidence suggests that cAMP compartments may be established and maintained by cAMP degrading enzymes, e.g. phosphodiesterases (PDEs). However, the molecular and biophysical details of how PDEs can orchestrate cAMP gradients are entirely unclear. In this paper, using fusion proteins of cAMP FRET-sensors and PDEs in living cells, we provide direct experimental evidence that the cAMP concentration in the vicinity of an individual PDE molecule is below the detection limit of our FRET sensors (&lt;100nM). This cAMP gradient persists in crude cytosol preparations. We developed mathematical models based on diffusion-reaction equations which describe the creation of nanocompartments around a single PDE molecule and more complex spatial PDE arrangements. The analytically solvable equations derived here explicitly determine how the capability of a single PDE, or PDE complexes, to create a nanocompartment depend on the cAMP degradation rate, the diffusive mobility of cAMP, and geometrical and topological parameters. We apply these generic models to our experimental data and determine the diffusive mobility and degradation rate of cAMP. The results obtained for these parameters differ by far from data in literature for free soluble cAMP interacting with PDE. Hence, restricted cAMP diffusion in the vincinity of PDE is necessary to create cAMP nanocompartments in cells.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28406920</pmid><doi>10.1371/journal.pone.0174856</doi><tpages>e0174856</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-04, Vol.12 (4), p.e0174856
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1887369635
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Biology and Life Sciences
Camps
Cell Line
Cells (biology)
Clinical medicine
Compartments
Cyclic adenosine monophosphate
Cyclic AMP
Cyclic AMP - metabolism
Cyclic nucleotides
Cytosol
Cytosol - metabolism
Degradation
Diffusion
Enzymes
Fluorescence resonance energy transfer
Fretting
Heart failure
Humans
Interdisciplinary aspects
Kinases
Mathematical models
Medicine
Medicine and Health Sciences
Mobility
Models, Biological
Nanostructure
Nucleotides
Numerical analysis
Pharmacology
Phosphoric Diester Hydrolases - metabolism
Physical Sciences
Physiological aspects
Proteins
Reaction-diffusion equations
Research and Analysis Methods
Second messengers
Sensors
Structure
Studies
Task complexity
Toxicology
title Experimental and mathematical analysis of cAMP nanodomains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A01%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20mathematical%20analysis%20of%20cAMP%20nanodomains&rft.jtitle=PloS%20one&rft.au=Lohse,%20Christian&rft.date=2017-04-13&rft.volume=12&rft.issue=4&rft.spage=e0174856&rft.pages=e0174856-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0174856&rft_dat=%3Cgale_plos_%3EA489519634%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1887369635&rft_id=info:pmid/28406920&rft_galeid=A489519634&rft_doaj_id=oai_doaj_org_article_9fc86554b8234785ba21819a6abe0fea&rfr_iscdi=true