High density mapping and haplotype analysis of the major stem-solidness locus SSt1 in durum and common wheat
Breeding for solid-stemmed durum (Triticum turgidum L. var durum) and common wheat (Triticum aestivum L.) cultivars is one strategy to minimize yield losses caused by the wheat stem sawfly (Cephus cinctus Norton). Major stem-solidness QTL have been localized to the long arm of chromosome 3B in both...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-04, Vol.12 (4), p.e0175285-e0175285 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0175285 |
---|---|
container_issue | 4 |
container_start_page | e0175285 |
container_title | PloS one |
container_volume | 12 |
creator | Nilsen, Kirby T N'Diaye, Amidou MacLachlan, P R Clarke, John M Ruan, Yuefeng Cuthbert, Richard D Knox, Ron E Wiebe, Krystalee Cory, Aron T Walkowiak, Sean Beres, Brian L Graf, Robert J Clarke, Fran R Sharpe, Andrew G Distelfeld, Assaf Pozniak, Curtis J |
description | Breeding for solid-stemmed durum (Triticum turgidum L. var durum) and common wheat (Triticum aestivum L.) cultivars is one strategy to minimize yield losses caused by the wheat stem sawfly (Cephus cinctus Norton). Major stem-solidness QTL have been localized to the long arm of chromosome 3B in both wheat species, but it is unclear if these QTL span a common genetic interval. In this study, we have improved the resolution of the QTL on chromosome 3B in a durum (Kofa/W9262-260D3) and common wheat (Lillian/Vesper) mapping population. Coincident QTL (LOD = 94-127, R2 = 78-92%) were localized near the telomere of chromosome 3BL in both mapping populations, which we designate SSt1. We further examined the SSt1 interval by using available consensus maps for durum and common wheat and compared genetic to physical intervals by anchoring markers to the current version of the wild emmer wheat (WEW) reference sequence. These results suggest that the SSt1 interval spans a physical distance of 1.6 Mb in WEW (positions 833.4-835.0 Mb). In addition, minor QTL were identified on chromosomes 2A, 2D, 4A, and 5A that were found to synergistically enhance expression of SSt1 to increase stem-solidness. These results suggest that developing new wheat cultivars with improved stem-solidness is possible by combining SSt1 with favorable alleles at minor loci within both wheat species. |
doi_str_mv | 10.1371/journal.pone.0175285 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1886636364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A489137161</galeid><doaj_id>oai_doaj_org_article_c6e7e2fdf1ab417e923ea8703cceb4d8</doaj_id><sourcerecordid>A489137161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-fd9cc73ce3b724f74691198adf5e768f020ce155563b7612f621bde7f15b493</originalsourceid><addsrcrecordid>eNqNk9-L1DAQx4so3nn6H4gGBNGHXZukTduXg-NQb-HgwBVfQ5pO2ixpsjapuv-92d3esZV7kDzk12e-k5nMJMlrnC4xLfCnjRsHK8xy6ywsU1zkpMyfJOe4omTBSEqfnqzPkhfeb9I0pyVjz5MzUtKqwpSdJ-ZGtx1qwHoddqgX2622LRK2QZ3YGhd2W4g7YXZee-QUCh1EauMG5AP0C--Mbix4j4yTo0frdcBIW9SMw9gfZKTre2fR7w5EeJk8U8J4eDXNF8n6y-fv1zeL27uvq-ur24VkFQkL1VRSFlQCrQuSqSJjFcZVKRqVQ8FKlZJUAs7znEWAYaIYwXUDhcJ5nVX0Inl7VI3v93xKk-e4jLHTOLJIrI5E48SGbwfdi2HHndD8cOCGloshaGmASwYFENUoLOoMF1ARCqIsUiol1FlTRq3LydtY99BIsGEQZiY6v7G64637xeNflFlJo8CHSWBwP0fwgffaSzBGWHDj4d1FmhNK8oi--wd9PLqJakUMQFvlol-5F-VXWVnti4fhSC0foeJooNcy1pTS8Xxm8HFmEJkAf0IrRu_5av3t_9m7H3P2_Qkby8SELpbVGLSzfg5mR1AOzvsB1EOSccr3zH02-L4l-NQS0ezN6Qc9GN33AP0L9x8HZg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1886636364</pqid></control><display><type>article</type><title>High density mapping and haplotype analysis of the major stem-solidness locus SSt1 in durum and common wheat</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Nilsen, Kirby T ; N'Diaye, Amidou ; MacLachlan, P R ; Clarke, John M ; Ruan, Yuefeng ; Cuthbert, Richard D ; Knox, Ron E ; Wiebe, Krystalee ; Cory, Aron T ; Walkowiak, Sean ; Beres, Brian L ; Graf, Robert J ; Clarke, Fran R ; Sharpe, Andrew G ; Distelfeld, Assaf ; Pozniak, Curtis J</creator><creatorcontrib>Nilsen, Kirby T ; N'Diaye, Amidou ; MacLachlan, P R ; Clarke, John M ; Ruan, Yuefeng ; Cuthbert, Richard D ; Knox, Ron E ; Wiebe, Krystalee ; Cory, Aron T ; Walkowiak, Sean ; Beres, Brian L ; Graf, Robert J ; Clarke, Fran R ; Sharpe, Andrew G ; Distelfeld, Assaf ; Pozniak, Curtis J</creatorcontrib><description>Breeding for solid-stemmed durum (Triticum turgidum L. var durum) and common wheat (Triticum aestivum L.) cultivars is one strategy to minimize yield losses caused by the wheat stem sawfly (Cephus cinctus Norton). Major stem-solidness QTL have been localized to the long arm of chromosome 3B in both wheat species, but it is unclear if these QTL span a common genetic interval. In this study, we have improved the resolution of the QTL on chromosome 3B in a durum (Kofa/W9262-260D3) and common wheat (Lillian/Vesper) mapping population. Coincident QTL (LOD = 94-127, R2 = 78-92%) were localized near the telomere of chromosome 3BL in both mapping populations, which we designate SSt1. We further examined the SSt1 interval by using available consensus maps for durum and common wheat and compared genetic to physical intervals by anchoring markers to the current version of the wild emmer wheat (WEW) reference sequence. These results suggest that the SSt1 interval spans a physical distance of 1.6 Mb in WEW (positions 833.4-835.0 Mb). In addition, minor QTL were identified on chromosomes 2A, 2D, 4A, and 5A that were found to synergistically enhance expression of SSt1 to increase stem-solidness. These results suggest that developing new wheat cultivars with improved stem-solidness is possible by combining SSt1 with favorable alleles at minor loci within both wheat species.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0175285</identifier><identifier>PMID: 28399136</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agricultural management ; Agricultural production ; Agriculture ; Agronomy ; Alignment ; Antibodies ; Apoptosis ; Bioinformatics ; Biology ; Biology and Life Sciences ; Botany ; Bread ; Breeding ; Cell cycle ; Cephus cinctus ; Chromosomes ; Computer programs ; Construction ; Cultivars ; Cytogenetics ; Cytology ; Durum wheat ; Ecology ; Elongation ; Environmental factors ; Feeding ; Food security ; Gene expression ; Gene mapping ; Genes, Plant ; Genetic aspects ; Genetic factors ; Genetics ; Germplasm ; Haplotypes ; Immunology ; Insecticides ; Insects ; Integrated pest management ; Kinases ; Larvae ; Light intensity ; Luminous intensity ; Mapping ; Mating ; Modulation ; Molecular biology ; Pest control ; Photosynthesis ; Plant breeding ; Plant sciences ; Protein kinase ; Proteins ; Quantitative Trait Loci ; R&D ; Recombination ; Research & development ; Research and Analysis Methods ; Signal transduction ; Species Specificity ; Telomeres ; Transcription factors ; Triple Bottom Line ; Triticum - classification ; Triticum - genetics ; Triticum aestivum ; Wheat ; Winter</subject><ispartof>PloS one, 2017-04, Vol.12 (4), p.e0175285-e0175285</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Nilsen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Nilsen et al 2017 Nilsen et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-fd9cc73ce3b724f74691198adf5e768f020ce155563b7612f621bde7f15b493</citedby><cites>FETCH-LOGICAL-c692t-fd9cc73ce3b724f74691198adf5e768f020ce155563b7612f621bde7f15b493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388483/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388483/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28399136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nilsen, Kirby T</creatorcontrib><creatorcontrib>N'Diaye, Amidou</creatorcontrib><creatorcontrib>MacLachlan, P R</creatorcontrib><creatorcontrib>Clarke, John M</creatorcontrib><creatorcontrib>Ruan, Yuefeng</creatorcontrib><creatorcontrib>Cuthbert, Richard D</creatorcontrib><creatorcontrib>Knox, Ron E</creatorcontrib><creatorcontrib>Wiebe, Krystalee</creatorcontrib><creatorcontrib>Cory, Aron T</creatorcontrib><creatorcontrib>Walkowiak, Sean</creatorcontrib><creatorcontrib>Beres, Brian L</creatorcontrib><creatorcontrib>Graf, Robert J</creatorcontrib><creatorcontrib>Clarke, Fran R</creatorcontrib><creatorcontrib>Sharpe, Andrew G</creatorcontrib><creatorcontrib>Distelfeld, Assaf</creatorcontrib><creatorcontrib>Pozniak, Curtis J</creatorcontrib><title>High density mapping and haplotype analysis of the major stem-solidness locus SSt1 in durum and common wheat</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Breeding for solid-stemmed durum (Triticum turgidum L. var durum) and common wheat (Triticum aestivum L.) cultivars is one strategy to minimize yield losses caused by the wheat stem sawfly (Cephus cinctus Norton). Major stem-solidness QTL have been localized to the long arm of chromosome 3B in both wheat species, but it is unclear if these QTL span a common genetic interval. In this study, we have improved the resolution of the QTL on chromosome 3B in a durum (Kofa/W9262-260D3) and common wheat (Lillian/Vesper) mapping population. Coincident QTL (LOD = 94-127, R2 = 78-92%) were localized near the telomere of chromosome 3BL in both mapping populations, which we designate SSt1. We further examined the SSt1 interval by using available consensus maps for durum and common wheat and compared genetic to physical intervals by anchoring markers to the current version of the wild emmer wheat (WEW) reference sequence. These results suggest that the SSt1 interval spans a physical distance of 1.6 Mb in WEW (positions 833.4-835.0 Mb). In addition, minor QTL were identified on chromosomes 2A, 2D, 4A, and 5A that were found to synergistically enhance expression of SSt1 to increase stem-solidness. These results suggest that developing new wheat cultivars with improved stem-solidness is possible by combining SSt1 with favorable alleles at minor loci within both wheat species.</description><subject>Agricultural management</subject><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Agronomy</subject><subject>Alignment</subject><subject>Antibodies</subject><subject>Apoptosis</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Botany</subject><subject>Bread</subject><subject>Breeding</subject><subject>Cell cycle</subject><subject>Cephus cinctus</subject><subject>Chromosomes</subject><subject>Computer programs</subject><subject>Construction</subject><subject>Cultivars</subject><subject>Cytogenetics</subject><subject>Cytology</subject><subject>Durum wheat</subject><subject>Ecology</subject><subject>Elongation</subject><subject>Environmental factors</subject><subject>Feeding</subject><subject>Food security</subject><subject>Gene expression</subject><subject>Gene mapping</subject><subject>Genes, Plant</subject><subject>Genetic aspects</subject><subject>Genetic factors</subject><subject>Genetics</subject><subject>Germplasm</subject><subject>Haplotypes</subject><subject>Immunology</subject><subject>Insecticides</subject><subject>Insects</subject><subject>Integrated pest management</subject><subject>Kinases</subject><subject>Larvae</subject><subject>Light intensity</subject><subject>Luminous intensity</subject><subject>Mapping</subject><subject>Mating</subject><subject>Modulation</subject><subject>Molecular biology</subject><subject>Pest control</subject><subject>Photosynthesis</subject><subject>Plant breeding</subject><subject>Plant sciences</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Quantitative Trait Loci</subject><subject>R&D</subject><subject>Recombination</subject><subject>Research & development</subject><subject>Research and Analysis Methods</subject><subject>Signal transduction</subject><subject>Species Specificity</subject><subject>Telomeres</subject><subject>Transcription factors</subject><subject>Triple Bottom Line</subject><subject>Triticum - classification</subject><subject>Triticum - genetics</subject><subject>Triticum aestivum</subject><subject>Wheat</subject><subject>Winter</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-L1DAQx4so3nn6H4gGBNGHXZukTduXg-NQb-HgwBVfQ5pO2ixpsjapuv-92d3esZV7kDzk12e-k5nMJMlrnC4xLfCnjRsHK8xy6ywsU1zkpMyfJOe4omTBSEqfnqzPkhfeb9I0pyVjz5MzUtKqwpSdJ-ZGtx1qwHoddqgX2622LRK2QZ3YGhd2W4g7YXZee-QUCh1EauMG5AP0C--Mbix4j4yTo0frdcBIW9SMw9gfZKTre2fR7w5EeJk8U8J4eDXNF8n6y-fv1zeL27uvq-ur24VkFQkL1VRSFlQCrQuSqSJjFcZVKRqVQ8FKlZJUAs7znEWAYaIYwXUDhcJ5nVX0Inl7VI3v93xKk-e4jLHTOLJIrI5E48SGbwfdi2HHndD8cOCGloshaGmASwYFENUoLOoMF1ARCqIsUiol1FlTRq3LydtY99BIsGEQZiY6v7G64637xeNflFlJo8CHSWBwP0fwgffaSzBGWHDj4d1FmhNK8oi--wd9PLqJakUMQFvlol-5F-VXWVnti4fhSC0foeJooNcy1pTS8Xxm8HFmEJkAf0IrRu_5av3t_9m7H3P2_Qkby8SELpbVGLSzfg5mR1AOzvsB1EOSccr3zH02-L4l-NQS0ezN6Qc9GN33AP0L9x8HZg</recordid><startdate>20170411</startdate><enddate>20170411</enddate><creator>Nilsen, Kirby T</creator><creator>N'Diaye, Amidou</creator><creator>MacLachlan, P R</creator><creator>Clarke, John M</creator><creator>Ruan, Yuefeng</creator><creator>Cuthbert, Richard D</creator><creator>Knox, Ron E</creator><creator>Wiebe, Krystalee</creator><creator>Cory, Aron T</creator><creator>Walkowiak, Sean</creator><creator>Beres, Brian L</creator><creator>Graf, Robert J</creator><creator>Clarke, Fran R</creator><creator>Sharpe, Andrew G</creator><creator>Distelfeld, Assaf</creator><creator>Pozniak, Curtis J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170411</creationdate><title>High density mapping and haplotype analysis of the major stem-solidness locus SSt1 in durum and common wheat</title><author>Nilsen, Kirby T ; N'Diaye, Amidou ; MacLachlan, P R ; Clarke, John M ; Ruan, Yuefeng ; Cuthbert, Richard D ; Knox, Ron E ; Wiebe, Krystalee ; Cory, Aron T ; Walkowiak, Sean ; Beres, Brian L ; Graf, Robert J ; Clarke, Fran R ; Sharpe, Andrew G ; Distelfeld, Assaf ; Pozniak, Curtis J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-fd9cc73ce3b724f74691198adf5e768f020ce155563b7612f621bde7f15b493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agricultural management</topic><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Agronomy</topic><topic>Alignment</topic><topic>Antibodies</topic><topic>Apoptosis</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Botany</topic><topic>Bread</topic><topic>Breeding</topic><topic>Cell cycle</topic><topic>Cephus cinctus</topic><topic>Chromosomes</topic><topic>Computer programs</topic><topic>Construction</topic><topic>Cultivars</topic><topic>Cytogenetics</topic><topic>Cytology</topic><topic>Durum wheat</topic><topic>Ecology</topic><topic>Elongation</topic><topic>Environmental factors</topic><topic>Feeding</topic><topic>Food security</topic><topic>Gene expression</topic><topic>Gene mapping</topic><topic>Genes, Plant</topic><topic>Genetic aspects</topic><topic>Genetic factors</topic><topic>Genetics</topic><topic>Germplasm</topic><topic>Haplotypes</topic><topic>Immunology</topic><topic>Insecticides</topic><topic>Insects</topic><topic>Integrated pest management</topic><topic>Kinases</topic><topic>Larvae</topic><topic>Light intensity</topic><topic>Luminous intensity</topic><topic>Mapping</topic><topic>Mating</topic><topic>Modulation</topic><topic>Molecular biology</topic><topic>Pest control</topic><topic>Photosynthesis</topic><topic>Plant breeding</topic><topic>Plant sciences</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Quantitative Trait Loci</topic><topic>R&D</topic><topic>Recombination</topic><topic>Research & development</topic><topic>Research and Analysis Methods</topic><topic>Signal transduction</topic><topic>Species Specificity</topic><topic>Telomeres</topic><topic>Transcription factors</topic><topic>Triple Bottom Line</topic><topic>Triticum - classification</topic><topic>Triticum - genetics</topic><topic>Triticum aestivum</topic><topic>Wheat</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nilsen, Kirby T</creatorcontrib><creatorcontrib>N'Diaye, Amidou</creatorcontrib><creatorcontrib>MacLachlan, P R</creatorcontrib><creatorcontrib>Clarke, John M</creatorcontrib><creatorcontrib>Ruan, Yuefeng</creatorcontrib><creatorcontrib>Cuthbert, Richard D</creatorcontrib><creatorcontrib>Knox, Ron E</creatorcontrib><creatorcontrib>Wiebe, Krystalee</creatorcontrib><creatorcontrib>Cory, Aron T</creatorcontrib><creatorcontrib>Walkowiak, Sean</creatorcontrib><creatorcontrib>Beres, Brian L</creatorcontrib><creatorcontrib>Graf, Robert J</creatorcontrib><creatorcontrib>Clarke, Fran R</creatorcontrib><creatorcontrib>Sharpe, Andrew G</creatorcontrib><creatorcontrib>Distelfeld, Assaf</creatorcontrib><creatorcontrib>Pozniak, Curtis J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nilsen, Kirby T</au><au>N'Diaye, Amidou</au><au>MacLachlan, P R</au><au>Clarke, John M</au><au>Ruan, Yuefeng</au><au>Cuthbert, Richard D</au><au>Knox, Ron E</au><au>Wiebe, Krystalee</au><au>Cory, Aron T</au><au>Walkowiak, Sean</au><au>Beres, Brian L</au><au>Graf, Robert J</au><au>Clarke, Fran R</au><au>Sharpe, Andrew G</au><au>Distelfeld, Assaf</au><au>Pozniak, Curtis J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High density mapping and haplotype analysis of the major stem-solidness locus SSt1 in durum and common wheat</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-04-11</date><risdate>2017</risdate><volume>12</volume><issue>4</issue><spage>e0175285</spage><epage>e0175285</epage><pages>e0175285-e0175285</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Breeding for solid-stemmed durum (Triticum turgidum L. var durum) and common wheat (Triticum aestivum L.) cultivars is one strategy to minimize yield losses caused by the wheat stem sawfly (Cephus cinctus Norton). Major stem-solidness QTL have been localized to the long arm of chromosome 3B in both wheat species, but it is unclear if these QTL span a common genetic interval. In this study, we have improved the resolution of the QTL on chromosome 3B in a durum (Kofa/W9262-260D3) and common wheat (Lillian/Vesper) mapping population. Coincident QTL (LOD = 94-127, R2 = 78-92%) were localized near the telomere of chromosome 3BL in both mapping populations, which we designate SSt1. We further examined the SSt1 interval by using available consensus maps for durum and common wheat and compared genetic to physical intervals by anchoring markers to the current version of the wild emmer wheat (WEW) reference sequence. These results suggest that the SSt1 interval spans a physical distance of 1.6 Mb in WEW (positions 833.4-835.0 Mb). In addition, minor QTL were identified on chromosomes 2A, 2D, 4A, and 5A that were found to synergistically enhance expression of SSt1 to increase stem-solidness. These results suggest that developing new wheat cultivars with improved stem-solidness is possible by combining SSt1 with favorable alleles at minor loci within both wheat species.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28399136</pmid><doi>10.1371/journal.pone.0175285</doi><tpages>e0175285</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-04, Vol.12 (4), p.e0175285-e0175285 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1886636364 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Agricultural management Agricultural production Agriculture Agronomy Alignment Antibodies Apoptosis Bioinformatics Biology Biology and Life Sciences Botany Bread Breeding Cell cycle Cephus cinctus Chromosomes Computer programs Construction Cultivars Cytogenetics Cytology Durum wheat Ecology Elongation Environmental factors Feeding Food security Gene expression Gene mapping Genes, Plant Genetic aspects Genetic factors Genetics Germplasm Haplotypes Immunology Insecticides Insects Integrated pest management Kinases Larvae Light intensity Luminous intensity Mapping Mating Modulation Molecular biology Pest control Photosynthesis Plant breeding Plant sciences Protein kinase Proteins Quantitative Trait Loci R&D Recombination Research & development Research and Analysis Methods Signal transduction Species Specificity Telomeres Transcription factors Triple Bottom Line Triticum - classification Triticum - genetics Triticum aestivum Wheat Winter |
title | High density mapping and haplotype analysis of the major stem-solidness locus SSt1 in durum and common wheat |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A39%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20density%20mapping%20and%20haplotype%20analysis%20of%20the%20major%20stem-solidness%20locus%20SSt1%20in%20durum%20and%20common%20wheat&rft.jtitle=PloS%20one&rft.au=Nilsen,%20Kirby%20T&rft.date=2017-04-11&rft.volume=12&rft.issue=4&rft.spage=e0175285&rft.epage=e0175285&rft.pages=e0175285-e0175285&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0175285&rft_dat=%3Cgale_plos_%3EA489137161%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1886636364&rft_id=info:pmid/28399136&rft_galeid=A489137161&rft_doaj_id=oai_doaj_org_article_c6e7e2fdf1ab417e923ea8703cceb4d8&rfr_iscdi=true |