Biodegradable poly (lactic acid-co-glycolic acid) scaffolds as carriers for genetically-modified fibroblasts

Recent advances in gene delivery into cells allow improved therapeutic effects in gene therapy trials. To increase the bioavailability of applied cells, it is of great interest that transfected cells remain at the application site and systemic spread is minimized. In this study, we tested clinically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-04, Vol.12 (4), p.e0174860
Hauptverfasser: Perisic, Tatjana, Zhang, Ziyang, Foehr, Peter, Hopfner, Ursula, Klutz, Kathrin, Burgkart, Rainer H, Slobodianski, Alexei, Goeldner, Moritz, Machens, Hans-Günther, Schilling, Arndt F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page e0174860
container_title PloS one
container_volume 12
creator Perisic, Tatjana
Zhang, Ziyang
Foehr, Peter
Hopfner, Ursula
Klutz, Kathrin
Burgkart, Rainer H
Slobodianski, Alexei
Goeldner, Moritz
Machens, Hans-Günther
Schilling, Arndt F
description Recent advances in gene delivery into cells allow improved therapeutic effects in gene therapy trials. To increase the bioavailability of applied cells, it is of great interest that transfected cells remain at the application site and systemic spread is minimized. In this study, we tested clinically used biodegradable poly(lactic acid-co-glycolic acid) (PLGA) scaffolds (Vicryl & Ethisorb) as transient carriers for genetically modified cells. To this aim, we used human fibroblasts and examined attachment and proliferation of untransfected cells on the scaffolds in vitro, as well as the mechanical properties of the scaffolds at four time points (1, 3, 6 and 9 days) of cultivation. Furthermore, the adherence of cells transfected with green fluorescent protein (GFP) and vascular endothelial growth factor (VEGF165) and also VEGF165 protein secretion were investigated. Our results show that human fibroblasts adhere on both types of PLGA scaffolds. However, proliferation and transgene expression capacity were higher on Ethisorb scaffolds most probably due to a different architecture of the scaffold. Additionally, cultivation of the cells on the scaffolds did not alter their biomechanical properties. The results of this investigation could be potentially exploited in therapeutic regiments with areal delivery of transiently transfected cells and may open the way for a variety of applications of cell-based gene therapy, tissue engineering and regenerative medicine.
doi_str_mv 10.1371/journal.pone.0174860
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1884474610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A488661590</galeid><doaj_id>oai_doaj_org_article_167e0b1e7a904a1e81f2cff78243966e</doaj_id><sourcerecordid>A488661590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4050-a21198f8351eaaa67aa72942355405842a7fe2de9c64fc1c804b2374ff4a2a5a3</originalsourceid><addsrcrecordid>eNp1Uk1v1DAUjBCIlsI_QBCJCxyy-Cu2c0FqKz4qVeICZ-vFeQ5eOfFi7yLtv8fbTauuBPLB1nsz43n2VNVrSlaUK_pxHXdphrDaxBlXhCqhJXlSndOOs0Yywp8-Op9VL3JeE9JyLeXz6oxprgnR5LwKVz4OOCYYoA9Yb2LY1-8D2K23NVg_NDY2Y9jbGJbChzpbcC6GIdeQawspeUy5djHVI85YiBDCvpni4J3HoXa-T7EPkLf5ZfXMQcj4atkvqp9fPv-4_tbcfv96c31521hBWtIAo7TTTvOWIgBIBaBYJxhv29LXgoFyyAbsrBTOUquJ6BlXwjkBDFrgF9Xbo-4mxGyWh8qGai2EEpKSgrg5IoYIa7NJfoK0NxG8uSvENBpIZZSAhkqFpKeooCMCKGrqmHVOaSZ4JyUWrU_Lbbt-wsHivE0QTkRPO7P_Zcb4x5TfoKqTReDdIpDi7x3m7X8sL6gRiis_u1jE7OSzNZdCl3-lbXdArf6BKmvAydsSFedL_YQgjgSbYs4J3YNxSswhaPdmzCFoZglaob15PPQD6T5Z_C-m8tCz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884474610</pqid></control><display><type>article</type><title>Biodegradable poly (lactic acid-co-glycolic acid) scaffolds as carriers for genetically-modified fibroblasts</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Perisic, Tatjana ; Zhang, Ziyang ; Foehr, Peter ; Hopfner, Ursula ; Klutz, Kathrin ; Burgkart, Rainer H ; Slobodianski, Alexei ; Goeldner, Moritz ; Machens, Hans-Günther ; Schilling, Arndt F</creator><contributor>Santos, Hélder A.</contributor><creatorcontrib>Perisic, Tatjana ; Zhang, Ziyang ; Foehr, Peter ; Hopfner, Ursula ; Klutz, Kathrin ; Burgkart, Rainer H ; Slobodianski, Alexei ; Goeldner, Moritz ; Machens, Hans-Günther ; Schilling, Arndt F ; Santos, Hélder A.</creatorcontrib><description>Recent advances in gene delivery into cells allow improved therapeutic effects in gene therapy trials. To increase the bioavailability of applied cells, it is of great interest that transfected cells remain at the application site and systemic spread is minimized. In this study, we tested clinically used biodegradable poly(lactic acid-co-glycolic acid) (PLGA) scaffolds (Vicryl &amp; Ethisorb) as transient carriers for genetically modified cells. To this aim, we used human fibroblasts and examined attachment and proliferation of untransfected cells on the scaffolds in vitro, as well as the mechanical properties of the scaffolds at four time points (1, 3, 6 and 9 days) of cultivation. Furthermore, the adherence of cells transfected with green fluorescent protein (GFP) and vascular endothelial growth factor (VEGF165) and also VEGF165 protein secretion were investigated. Our results show that human fibroblasts adhere on both types of PLGA scaffolds. However, proliferation and transgene expression capacity were higher on Ethisorb scaffolds most probably due to a different architecture of the scaffold. Additionally, cultivation of the cells on the scaffolds did not alter their biomechanical properties. The results of this investigation could be potentially exploited in therapeutic regiments with areal delivery of transiently transfected cells and may open the way for a variety of applications of cell-based gene therapy, tissue engineering and regenerative medicine.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0174860</identifier><identifier>PMID: 28380080</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Bioavailability ; Biodegradability ; Biodegradation ; Biology and Life Sciences ; Biomechanical engineering ; Biomechanics ; Biomedical materials ; Cell Adhesion ; Cell Engineering ; Cell Line ; Cell Proliferation ; Cultivation ; Engineering ; Fibroblasts ; Fibroblasts - physiology ; Fluorescence ; Gene expression ; Gene therapy ; Gene transfer ; Genetic Engineering ; Genetic modification ; Glycolic acid ; Green fluorescent protein ; Green Fluorescent Proteins - metabolism ; Growth factors ; Hand surgery ; Health aspects ; Humans ; Lactic acid ; Lactic Acid - chemistry ; Mechanical properties ; Medicine and Health Sciences ; Physiological aspects ; Plastic surgery ; Polyglycolic Acid - chemistry ; Polylactic acid ; Polylactic Acid-Polyglycolic Acid Copolymer ; Polylactide-co-glycolide ; Polymers ; Proteins ; Regeneration ; Regenerative medicine ; Research and Analysis Methods ; Scaffolds ; Secretion ; Skin ; Tissue engineering ; Tissue Scaffolds ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - metabolism ; Volumetric analysis</subject><ispartof>PloS one, 2017-04, Vol.12 (4), p.e0174860</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Perisic et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Perisic et al 2017 Perisic et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4050-a21198f8351eaaa67aa72942355405842a7fe2de9c64fc1c804b2374ff4a2a5a3</citedby><cites>FETCH-LOGICAL-c4050-a21198f8351eaaa67aa72942355405842a7fe2de9c64fc1c804b2374ff4a2a5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381796/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381796/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28380080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Santos, Hélder A.</contributor><creatorcontrib>Perisic, Tatjana</creatorcontrib><creatorcontrib>Zhang, Ziyang</creatorcontrib><creatorcontrib>Foehr, Peter</creatorcontrib><creatorcontrib>Hopfner, Ursula</creatorcontrib><creatorcontrib>Klutz, Kathrin</creatorcontrib><creatorcontrib>Burgkart, Rainer H</creatorcontrib><creatorcontrib>Slobodianski, Alexei</creatorcontrib><creatorcontrib>Goeldner, Moritz</creatorcontrib><creatorcontrib>Machens, Hans-Günther</creatorcontrib><creatorcontrib>Schilling, Arndt F</creatorcontrib><title>Biodegradable poly (lactic acid-co-glycolic acid) scaffolds as carriers for genetically-modified fibroblasts</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Recent advances in gene delivery into cells allow improved therapeutic effects in gene therapy trials. To increase the bioavailability of applied cells, it is of great interest that transfected cells remain at the application site and systemic spread is minimized. In this study, we tested clinically used biodegradable poly(lactic acid-co-glycolic acid) (PLGA) scaffolds (Vicryl &amp; Ethisorb) as transient carriers for genetically modified cells. To this aim, we used human fibroblasts and examined attachment and proliferation of untransfected cells on the scaffolds in vitro, as well as the mechanical properties of the scaffolds at four time points (1, 3, 6 and 9 days) of cultivation. Furthermore, the adherence of cells transfected with green fluorescent protein (GFP) and vascular endothelial growth factor (VEGF165) and also VEGF165 protein secretion were investigated. Our results show that human fibroblasts adhere on both types of PLGA scaffolds. However, proliferation and transgene expression capacity were higher on Ethisorb scaffolds most probably due to a different architecture of the scaffold. Additionally, cultivation of the cells on the scaffolds did not alter their biomechanical properties. The results of this investigation could be potentially exploited in therapeutic regiments with areal delivery of transiently transfected cells and may open the way for a variety of applications of cell-based gene therapy, tissue engineering and regenerative medicine.</description><subject>Acids</subject><subject>Bioavailability</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biology and Life Sciences</subject><subject>Biomechanical engineering</subject><subject>Biomechanics</subject><subject>Biomedical materials</subject><subject>Cell Adhesion</subject><subject>Cell Engineering</subject><subject>Cell Line</subject><subject>Cell Proliferation</subject><subject>Cultivation</subject><subject>Engineering</subject><subject>Fibroblasts</subject><subject>Fibroblasts - physiology</subject><subject>Fluorescence</subject><subject>Gene expression</subject><subject>Gene therapy</subject><subject>Gene transfer</subject><subject>Genetic Engineering</subject><subject>Genetic modification</subject><subject>Glycolic acid</subject><subject>Green fluorescent protein</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Growth factors</subject><subject>Hand surgery</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Lactic acid</subject><subject>Lactic Acid - chemistry</subject><subject>Mechanical properties</subject><subject>Medicine and Health Sciences</subject><subject>Physiological aspects</subject><subject>Plastic surgery</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Polylactic acid</subject><subject>Polylactic Acid-Polyglycolic Acid Copolymer</subject><subject>Polylactide-co-glycolide</subject><subject>Polymers</subject><subject>Proteins</subject><subject>Regeneration</subject><subject>Regenerative medicine</subject><subject>Research and Analysis Methods</subject><subject>Scaffolds</subject><subject>Secretion</subject><subject>Skin</subject><subject>Tissue engineering</subject><subject>Tissue Scaffolds</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Volumetric analysis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uk1v1DAUjBCIlsI_QBCJCxyy-Cu2c0FqKz4qVeICZ-vFeQ5eOfFi7yLtv8fbTauuBPLB1nsz43n2VNVrSlaUK_pxHXdphrDaxBlXhCqhJXlSndOOs0Yywp8-Op9VL3JeE9JyLeXz6oxprgnR5LwKVz4OOCYYoA9Yb2LY1-8D2K23NVg_NDY2Y9jbGJbChzpbcC6GIdeQawspeUy5djHVI85YiBDCvpni4J3HoXa-T7EPkLf5ZfXMQcj4atkvqp9fPv-4_tbcfv96c31521hBWtIAo7TTTvOWIgBIBaBYJxhv29LXgoFyyAbsrBTOUquJ6BlXwjkBDFrgF9Xbo-4mxGyWh8qGai2EEpKSgrg5IoYIa7NJfoK0NxG8uSvENBpIZZSAhkqFpKeooCMCKGrqmHVOaSZ4JyUWrU_Lbbt-wsHivE0QTkRPO7P_Zcb4x5TfoKqTReDdIpDi7x3m7X8sL6gRiis_u1jE7OSzNZdCl3-lbXdArf6BKmvAydsSFedL_YQgjgSbYs4J3YNxSswhaPdmzCFoZglaob15PPQD6T5Z_C-m8tCz</recordid><startdate>20170405</startdate><enddate>20170405</enddate><creator>Perisic, Tatjana</creator><creator>Zhang, Ziyang</creator><creator>Foehr, Peter</creator><creator>Hopfner, Ursula</creator><creator>Klutz, Kathrin</creator><creator>Burgkart, Rainer H</creator><creator>Slobodianski, Alexei</creator><creator>Goeldner, Moritz</creator><creator>Machens, Hans-Günther</creator><creator>Schilling, Arndt F</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170405</creationdate><title>Biodegradable poly (lactic acid-co-glycolic acid) scaffolds as carriers for genetically-modified fibroblasts</title><author>Perisic, Tatjana ; Zhang, Ziyang ; Foehr, Peter ; Hopfner, Ursula ; Klutz, Kathrin ; Burgkart, Rainer H ; Slobodianski, Alexei ; Goeldner, Moritz ; Machens, Hans-Günther ; Schilling, Arndt F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4050-a21198f8351eaaa67aa72942355405842a7fe2de9c64fc1c804b2374ff4a2a5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acids</topic><topic>Bioavailability</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biology and Life Sciences</topic><topic>Biomechanical engineering</topic><topic>Biomechanics</topic><topic>Biomedical materials</topic><topic>Cell Adhesion</topic><topic>Cell Engineering</topic><topic>Cell Line</topic><topic>Cell Proliferation</topic><topic>Cultivation</topic><topic>Engineering</topic><topic>Fibroblasts</topic><topic>Fibroblasts - physiology</topic><topic>Fluorescence</topic><topic>Gene expression</topic><topic>Gene therapy</topic><topic>Gene transfer</topic><topic>Genetic Engineering</topic><topic>Genetic modification</topic><topic>Glycolic acid</topic><topic>Green fluorescent protein</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Growth factors</topic><topic>Hand surgery</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Lactic acid</topic><topic>Lactic Acid - chemistry</topic><topic>Mechanical properties</topic><topic>Medicine and Health Sciences</topic><topic>Physiological aspects</topic><topic>Plastic surgery</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Polylactic acid</topic><topic>Polylactic Acid-Polyglycolic Acid Copolymer</topic><topic>Polylactide-co-glycolide</topic><topic>Polymers</topic><topic>Proteins</topic><topic>Regeneration</topic><topic>Regenerative medicine</topic><topic>Research and Analysis Methods</topic><topic>Scaffolds</topic><topic>Secretion</topic><topic>Skin</topic><topic>Tissue engineering</topic><topic>Tissue Scaffolds</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Volumetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perisic, Tatjana</creatorcontrib><creatorcontrib>Zhang, Ziyang</creatorcontrib><creatorcontrib>Foehr, Peter</creatorcontrib><creatorcontrib>Hopfner, Ursula</creatorcontrib><creatorcontrib>Klutz, Kathrin</creatorcontrib><creatorcontrib>Burgkart, Rainer H</creatorcontrib><creatorcontrib>Slobodianski, Alexei</creatorcontrib><creatorcontrib>Goeldner, Moritz</creatorcontrib><creatorcontrib>Machens, Hans-Günther</creatorcontrib><creatorcontrib>Schilling, Arndt F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perisic, Tatjana</au><au>Zhang, Ziyang</au><au>Foehr, Peter</au><au>Hopfner, Ursula</au><au>Klutz, Kathrin</au><au>Burgkart, Rainer H</au><au>Slobodianski, Alexei</au><au>Goeldner, Moritz</au><au>Machens, Hans-Günther</au><au>Schilling, Arndt F</au><au>Santos, Hélder A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodegradable poly (lactic acid-co-glycolic acid) scaffolds as carriers for genetically-modified fibroblasts</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-04-05</date><risdate>2017</risdate><volume>12</volume><issue>4</issue><spage>e0174860</spage><pages>e0174860-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Recent advances in gene delivery into cells allow improved therapeutic effects in gene therapy trials. To increase the bioavailability of applied cells, it is of great interest that transfected cells remain at the application site and systemic spread is minimized. In this study, we tested clinically used biodegradable poly(lactic acid-co-glycolic acid) (PLGA) scaffolds (Vicryl &amp; Ethisorb) as transient carriers for genetically modified cells. To this aim, we used human fibroblasts and examined attachment and proliferation of untransfected cells on the scaffolds in vitro, as well as the mechanical properties of the scaffolds at four time points (1, 3, 6 and 9 days) of cultivation. Furthermore, the adherence of cells transfected with green fluorescent protein (GFP) and vascular endothelial growth factor (VEGF165) and also VEGF165 protein secretion were investigated. Our results show that human fibroblasts adhere on both types of PLGA scaffolds. However, proliferation and transgene expression capacity were higher on Ethisorb scaffolds most probably due to a different architecture of the scaffold. Additionally, cultivation of the cells on the scaffolds did not alter their biomechanical properties. The results of this investigation could be potentially exploited in therapeutic regiments with areal delivery of transiently transfected cells and may open the way for a variety of applications of cell-based gene therapy, tissue engineering and regenerative medicine.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28380080</pmid><doi>10.1371/journal.pone.0174860</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-04, Vol.12 (4), p.e0174860
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1884474610
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acids
Bioavailability
Biodegradability
Biodegradation
Biology and Life Sciences
Biomechanical engineering
Biomechanics
Biomedical materials
Cell Adhesion
Cell Engineering
Cell Line
Cell Proliferation
Cultivation
Engineering
Fibroblasts
Fibroblasts - physiology
Fluorescence
Gene expression
Gene therapy
Gene transfer
Genetic Engineering
Genetic modification
Glycolic acid
Green fluorescent protein
Green Fluorescent Proteins - metabolism
Growth factors
Hand surgery
Health aspects
Humans
Lactic acid
Lactic Acid - chemistry
Mechanical properties
Medicine and Health Sciences
Physiological aspects
Plastic surgery
Polyglycolic Acid - chemistry
Polylactic acid
Polylactic Acid-Polyglycolic Acid Copolymer
Polylactide-co-glycolide
Polymers
Proteins
Regeneration
Regenerative medicine
Research and Analysis Methods
Scaffolds
Secretion
Skin
Tissue engineering
Tissue Scaffolds
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - metabolism
Volumetric analysis
title Biodegradable poly (lactic acid-co-glycolic acid) scaffolds as carriers for genetically-modified fibroblasts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodegradable%20poly%20(lactic%20acid-co-glycolic%20acid)%20scaffolds%20as%20carriers%20for%20genetically-modified%20fibroblasts&rft.jtitle=PloS%20one&rft.au=Perisic,%20Tatjana&rft.date=2017-04-05&rft.volume=12&rft.issue=4&rft.spage=e0174860&rft.pages=e0174860-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0174860&rft_dat=%3Cgale_plos_%3EA488661590%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884474610&rft_id=info:pmid/28380080&rft_galeid=A488661590&rft_doaj_id=oai_doaj_org_article_167e0b1e7a904a1e81f2cff78243966e&rfr_iscdi=true