Biodegradable poly (lactic acid-co-glycolic acid) scaffolds as carriers for genetically-modified fibroblasts
Recent advances in gene delivery into cells allow improved therapeutic effects in gene therapy trials. To increase the bioavailability of applied cells, it is of great interest that transfected cells remain at the application site and systemic spread is minimized. In this study, we tested clinically...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-04, Vol.12 (4), p.e0174860 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | e0174860 |
container_title | PloS one |
container_volume | 12 |
creator | Perisic, Tatjana Zhang, Ziyang Foehr, Peter Hopfner, Ursula Klutz, Kathrin Burgkart, Rainer H Slobodianski, Alexei Goeldner, Moritz Machens, Hans-Günther Schilling, Arndt F |
description | Recent advances in gene delivery into cells allow improved therapeutic effects in gene therapy trials. To increase the bioavailability of applied cells, it is of great interest that transfected cells remain at the application site and systemic spread is minimized. In this study, we tested clinically used biodegradable poly(lactic acid-co-glycolic acid) (PLGA) scaffolds (Vicryl & Ethisorb) as transient carriers for genetically modified cells. To this aim, we used human fibroblasts and examined attachment and proliferation of untransfected cells on the scaffolds in vitro, as well as the mechanical properties of the scaffolds at four time points (1, 3, 6 and 9 days) of cultivation. Furthermore, the adherence of cells transfected with green fluorescent protein (GFP) and vascular endothelial growth factor (VEGF165) and also VEGF165 protein secretion were investigated. Our results show that human fibroblasts adhere on both types of PLGA scaffolds. However, proliferation and transgene expression capacity were higher on Ethisorb scaffolds most probably due to a different architecture of the scaffold. Additionally, cultivation of the cells on the scaffolds did not alter their biomechanical properties. The results of this investigation could be potentially exploited in therapeutic regiments with areal delivery of transiently transfected cells and may open the way for a variety of applications of cell-based gene therapy, tissue engineering and regenerative medicine. |
doi_str_mv | 10.1371/journal.pone.0174860 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1884474610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A488661590</galeid><doaj_id>oai_doaj_org_article_167e0b1e7a904a1e81f2cff78243966e</doaj_id><sourcerecordid>A488661590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4050-a21198f8351eaaa67aa72942355405842a7fe2de9c64fc1c804b2374ff4a2a5a3</originalsourceid><addsrcrecordid>eNp1Uk1v1DAUjBCIlsI_QBCJCxyy-Cu2c0FqKz4qVeICZ-vFeQ5eOfFi7yLtv8fbTauuBPLB1nsz43n2VNVrSlaUK_pxHXdphrDaxBlXhCqhJXlSndOOs0Yywp8-Op9VL3JeE9JyLeXz6oxprgnR5LwKVz4OOCYYoA9Yb2LY1-8D2K23NVg_NDY2Y9jbGJbChzpbcC6GIdeQawspeUy5djHVI85YiBDCvpni4J3HoXa-T7EPkLf5ZfXMQcj4atkvqp9fPv-4_tbcfv96c31521hBWtIAo7TTTvOWIgBIBaBYJxhv29LXgoFyyAbsrBTOUquJ6BlXwjkBDFrgF9Xbo-4mxGyWh8qGai2EEpKSgrg5IoYIa7NJfoK0NxG8uSvENBpIZZSAhkqFpKeooCMCKGrqmHVOaSZ4JyUWrU_Lbbt-wsHivE0QTkRPO7P_Zcb4x5TfoKqTReDdIpDi7x3m7X8sL6gRiis_u1jE7OSzNZdCl3-lbXdArf6BKmvAydsSFedL_YQgjgSbYs4J3YNxSswhaPdmzCFoZglaob15PPQD6T5Z_C-m8tCz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884474610</pqid></control><display><type>article</type><title>Biodegradable poly (lactic acid-co-glycolic acid) scaffolds as carriers for genetically-modified fibroblasts</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Perisic, Tatjana ; Zhang, Ziyang ; Foehr, Peter ; Hopfner, Ursula ; Klutz, Kathrin ; Burgkart, Rainer H ; Slobodianski, Alexei ; Goeldner, Moritz ; Machens, Hans-Günther ; Schilling, Arndt F</creator><contributor>Santos, Hélder A.</contributor><creatorcontrib>Perisic, Tatjana ; Zhang, Ziyang ; Foehr, Peter ; Hopfner, Ursula ; Klutz, Kathrin ; Burgkart, Rainer H ; Slobodianski, Alexei ; Goeldner, Moritz ; Machens, Hans-Günther ; Schilling, Arndt F ; Santos, Hélder A.</creatorcontrib><description>Recent advances in gene delivery into cells allow improved therapeutic effects in gene therapy trials. To increase the bioavailability of applied cells, it is of great interest that transfected cells remain at the application site and systemic spread is minimized. In this study, we tested clinically used biodegradable poly(lactic acid-co-glycolic acid) (PLGA) scaffolds (Vicryl & Ethisorb) as transient carriers for genetically modified cells. To this aim, we used human fibroblasts and examined attachment and proliferation of untransfected cells on the scaffolds in vitro, as well as the mechanical properties of the scaffolds at four time points (1, 3, 6 and 9 days) of cultivation. Furthermore, the adherence of cells transfected with green fluorescent protein (GFP) and vascular endothelial growth factor (VEGF165) and also VEGF165 protein secretion were investigated. Our results show that human fibroblasts adhere on both types of PLGA scaffolds. However, proliferation and transgene expression capacity were higher on Ethisorb scaffolds most probably due to a different architecture of the scaffold. Additionally, cultivation of the cells on the scaffolds did not alter their biomechanical properties. The results of this investigation could be potentially exploited in therapeutic regiments with areal delivery of transiently transfected cells and may open the way for a variety of applications of cell-based gene therapy, tissue engineering and regenerative medicine.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0174860</identifier><identifier>PMID: 28380080</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Bioavailability ; Biodegradability ; Biodegradation ; Biology and Life Sciences ; Biomechanical engineering ; Biomechanics ; Biomedical materials ; Cell Adhesion ; Cell Engineering ; Cell Line ; Cell Proliferation ; Cultivation ; Engineering ; Fibroblasts ; Fibroblasts - physiology ; Fluorescence ; Gene expression ; Gene therapy ; Gene transfer ; Genetic Engineering ; Genetic modification ; Glycolic acid ; Green fluorescent protein ; Green Fluorescent Proteins - metabolism ; Growth factors ; Hand surgery ; Health aspects ; Humans ; Lactic acid ; Lactic Acid - chemistry ; Mechanical properties ; Medicine and Health Sciences ; Physiological aspects ; Plastic surgery ; Polyglycolic Acid - chemistry ; Polylactic acid ; Polylactic Acid-Polyglycolic Acid Copolymer ; Polylactide-co-glycolide ; Polymers ; Proteins ; Regeneration ; Regenerative medicine ; Research and Analysis Methods ; Scaffolds ; Secretion ; Skin ; Tissue engineering ; Tissue Scaffolds ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - metabolism ; Volumetric analysis</subject><ispartof>PloS one, 2017-04, Vol.12 (4), p.e0174860</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Perisic et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Perisic et al 2017 Perisic et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4050-a21198f8351eaaa67aa72942355405842a7fe2de9c64fc1c804b2374ff4a2a5a3</citedby><cites>FETCH-LOGICAL-c4050-a21198f8351eaaa67aa72942355405842a7fe2de9c64fc1c804b2374ff4a2a5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381796/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381796/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28380080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Santos, Hélder A.</contributor><creatorcontrib>Perisic, Tatjana</creatorcontrib><creatorcontrib>Zhang, Ziyang</creatorcontrib><creatorcontrib>Foehr, Peter</creatorcontrib><creatorcontrib>Hopfner, Ursula</creatorcontrib><creatorcontrib>Klutz, Kathrin</creatorcontrib><creatorcontrib>Burgkart, Rainer H</creatorcontrib><creatorcontrib>Slobodianski, Alexei</creatorcontrib><creatorcontrib>Goeldner, Moritz</creatorcontrib><creatorcontrib>Machens, Hans-Günther</creatorcontrib><creatorcontrib>Schilling, Arndt F</creatorcontrib><title>Biodegradable poly (lactic acid-co-glycolic acid) scaffolds as carriers for genetically-modified fibroblasts</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Recent advances in gene delivery into cells allow improved therapeutic effects in gene therapy trials. To increase the bioavailability of applied cells, it is of great interest that transfected cells remain at the application site and systemic spread is minimized. In this study, we tested clinically used biodegradable poly(lactic acid-co-glycolic acid) (PLGA) scaffolds (Vicryl & Ethisorb) as transient carriers for genetically modified cells. To this aim, we used human fibroblasts and examined attachment and proliferation of untransfected cells on the scaffolds in vitro, as well as the mechanical properties of the scaffolds at four time points (1, 3, 6 and 9 days) of cultivation. Furthermore, the adherence of cells transfected with green fluorescent protein (GFP) and vascular endothelial growth factor (VEGF165) and also VEGF165 protein secretion were investigated. Our results show that human fibroblasts adhere on both types of PLGA scaffolds. However, proliferation and transgene expression capacity were higher on Ethisorb scaffolds most probably due to a different architecture of the scaffold. Additionally, cultivation of the cells on the scaffolds did not alter their biomechanical properties. The results of this investigation could be potentially exploited in therapeutic regiments with areal delivery of transiently transfected cells and may open the way for a variety of applications of cell-based gene therapy, tissue engineering and regenerative medicine.</description><subject>Acids</subject><subject>Bioavailability</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biology and Life Sciences</subject><subject>Biomechanical engineering</subject><subject>Biomechanics</subject><subject>Biomedical materials</subject><subject>Cell Adhesion</subject><subject>Cell Engineering</subject><subject>Cell Line</subject><subject>Cell Proliferation</subject><subject>Cultivation</subject><subject>Engineering</subject><subject>Fibroblasts</subject><subject>Fibroblasts - physiology</subject><subject>Fluorescence</subject><subject>Gene expression</subject><subject>Gene therapy</subject><subject>Gene transfer</subject><subject>Genetic Engineering</subject><subject>Genetic modification</subject><subject>Glycolic acid</subject><subject>Green fluorescent protein</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Growth factors</subject><subject>Hand surgery</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Lactic acid</subject><subject>Lactic Acid - chemistry</subject><subject>Mechanical properties</subject><subject>Medicine and Health Sciences</subject><subject>Physiological aspects</subject><subject>Plastic surgery</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Polylactic acid</subject><subject>Polylactic Acid-Polyglycolic Acid Copolymer</subject><subject>Polylactide-co-glycolide</subject><subject>Polymers</subject><subject>Proteins</subject><subject>Regeneration</subject><subject>Regenerative medicine</subject><subject>Research and Analysis Methods</subject><subject>Scaffolds</subject><subject>Secretion</subject><subject>Skin</subject><subject>Tissue engineering</subject><subject>Tissue Scaffolds</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Volumetric analysis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uk1v1DAUjBCIlsI_QBCJCxyy-Cu2c0FqKz4qVeICZ-vFeQ5eOfFi7yLtv8fbTauuBPLB1nsz43n2VNVrSlaUK_pxHXdphrDaxBlXhCqhJXlSndOOs0Yywp8-Op9VL3JeE9JyLeXz6oxprgnR5LwKVz4OOCYYoA9Yb2LY1-8D2K23NVg_NDY2Y9jbGJbChzpbcC6GIdeQawspeUy5djHVI85YiBDCvpni4J3HoXa-T7EPkLf5ZfXMQcj4atkvqp9fPv-4_tbcfv96c31521hBWtIAo7TTTvOWIgBIBaBYJxhv29LXgoFyyAbsrBTOUquJ6BlXwjkBDFrgF9Xbo-4mxGyWh8qGai2EEpKSgrg5IoYIa7NJfoK0NxG8uSvENBpIZZSAhkqFpKeooCMCKGrqmHVOaSZ4JyUWrU_Lbbt-wsHivE0QTkRPO7P_Zcb4x5TfoKqTReDdIpDi7x3m7X8sL6gRiis_u1jE7OSzNZdCl3-lbXdArf6BKmvAydsSFedL_YQgjgSbYs4J3YNxSswhaPdmzCFoZglaob15PPQD6T5Z_C-m8tCz</recordid><startdate>20170405</startdate><enddate>20170405</enddate><creator>Perisic, Tatjana</creator><creator>Zhang, Ziyang</creator><creator>Foehr, Peter</creator><creator>Hopfner, Ursula</creator><creator>Klutz, Kathrin</creator><creator>Burgkart, Rainer H</creator><creator>Slobodianski, Alexei</creator><creator>Goeldner, Moritz</creator><creator>Machens, Hans-Günther</creator><creator>Schilling, Arndt F</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170405</creationdate><title>Biodegradable poly (lactic acid-co-glycolic acid) scaffolds as carriers for genetically-modified fibroblasts</title><author>Perisic, Tatjana ; Zhang, Ziyang ; Foehr, Peter ; Hopfner, Ursula ; Klutz, Kathrin ; Burgkart, Rainer H ; Slobodianski, Alexei ; Goeldner, Moritz ; Machens, Hans-Günther ; Schilling, Arndt F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4050-a21198f8351eaaa67aa72942355405842a7fe2de9c64fc1c804b2374ff4a2a5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acids</topic><topic>Bioavailability</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biology and Life Sciences</topic><topic>Biomechanical engineering</topic><topic>Biomechanics</topic><topic>Biomedical materials</topic><topic>Cell Adhesion</topic><topic>Cell Engineering</topic><topic>Cell Line</topic><topic>Cell Proliferation</topic><topic>Cultivation</topic><topic>Engineering</topic><topic>Fibroblasts</topic><topic>Fibroblasts - physiology</topic><topic>Fluorescence</topic><topic>Gene expression</topic><topic>Gene therapy</topic><topic>Gene transfer</topic><topic>Genetic Engineering</topic><topic>Genetic modification</topic><topic>Glycolic acid</topic><topic>Green fluorescent protein</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Growth factors</topic><topic>Hand surgery</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Lactic acid</topic><topic>Lactic Acid - chemistry</topic><topic>Mechanical properties</topic><topic>Medicine and Health Sciences</topic><topic>Physiological aspects</topic><topic>Plastic surgery</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Polylactic acid</topic><topic>Polylactic Acid-Polyglycolic Acid Copolymer</topic><topic>Polylactide-co-glycolide</topic><topic>Polymers</topic><topic>Proteins</topic><topic>Regeneration</topic><topic>Regenerative medicine</topic><topic>Research and Analysis Methods</topic><topic>Scaffolds</topic><topic>Secretion</topic><topic>Skin</topic><topic>Tissue engineering</topic><topic>Tissue Scaffolds</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Volumetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perisic, Tatjana</creatorcontrib><creatorcontrib>Zhang, Ziyang</creatorcontrib><creatorcontrib>Foehr, Peter</creatorcontrib><creatorcontrib>Hopfner, Ursula</creatorcontrib><creatorcontrib>Klutz, Kathrin</creatorcontrib><creatorcontrib>Burgkart, Rainer H</creatorcontrib><creatorcontrib>Slobodianski, Alexei</creatorcontrib><creatorcontrib>Goeldner, Moritz</creatorcontrib><creatorcontrib>Machens, Hans-Günther</creatorcontrib><creatorcontrib>Schilling, Arndt F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perisic, Tatjana</au><au>Zhang, Ziyang</au><au>Foehr, Peter</au><au>Hopfner, Ursula</au><au>Klutz, Kathrin</au><au>Burgkart, Rainer H</au><au>Slobodianski, Alexei</au><au>Goeldner, Moritz</au><au>Machens, Hans-Günther</au><au>Schilling, Arndt F</au><au>Santos, Hélder A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodegradable poly (lactic acid-co-glycolic acid) scaffolds as carriers for genetically-modified fibroblasts</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-04-05</date><risdate>2017</risdate><volume>12</volume><issue>4</issue><spage>e0174860</spage><pages>e0174860-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Recent advances in gene delivery into cells allow improved therapeutic effects in gene therapy trials. To increase the bioavailability of applied cells, it is of great interest that transfected cells remain at the application site and systemic spread is minimized. In this study, we tested clinically used biodegradable poly(lactic acid-co-glycolic acid) (PLGA) scaffolds (Vicryl & Ethisorb) as transient carriers for genetically modified cells. To this aim, we used human fibroblasts and examined attachment and proliferation of untransfected cells on the scaffolds in vitro, as well as the mechanical properties of the scaffolds at four time points (1, 3, 6 and 9 days) of cultivation. Furthermore, the adherence of cells transfected with green fluorescent protein (GFP) and vascular endothelial growth factor (VEGF165) and also VEGF165 protein secretion were investigated. Our results show that human fibroblasts adhere on both types of PLGA scaffolds. However, proliferation and transgene expression capacity were higher on Ethisorb scaffolds most probably due to a different architecture of the scaffold. Additionally, cultivation of the cells on the scaffolds did not alter their biomechanical properties. The results of this investigation could be potentially exploited in therapeutic regiments with areal delivery of transiently transfected cells and may open the way for a variety of applications of cell-based gene therapy, tissue engineering and regenerative medicine.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28380080</pmid><doi>10.1371/journal.pone.0174860</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-04, Vol.12 (4), p.e0174860 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1884474610 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acids Bioavailability Biodegradability Biodegradation Biology and Life Sciences Biomechanical engineering Biomechanics Biomedical materials Cell Adhesion Cell Engineering Cell Line Cell Proliferation Cultivation Engineering Fibroblasts Fibroblasts - physiology Fluorescence Gene expression Gene therapy Gene transfer Genetic Engineering Genetic modification Glycolic acid Green fluorescent protein Green Fluorescent Proteins - metabolism Growth factors Hand surgery Health aspects Humans Lactic acid Lactic Acid - chemistry Mechanical properties Medicine and Health Sciences Physiological aspects Plastic surgery Polyglycolic Acid - chemistry Polylactic acid Polylactic Acid-Polyglycolic Acid Copolymer Polylactide-co-glycolide Polymers Proteins Regeneration Regenerative medicine Research and Analysis Methods Scaffolds Secretion Skin Tissue engineering Tissue Scaffolds Vascular endothelial growth factor Vascular Endothelial Growth Factor A - metabolism Volumetric analysis |
title | Biodegradable poly (lactic acid-co-glycolic acid) scaffolds as carriers for genetically-modified fibroblasts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodegradable%20poly%20(lactic%20acid-co-glycolic%20acid)%20scaffolds%20as%20carriers%20for%20genetically-modified%20fibroblasts&rft.jtitle=PloS%20one&rft.au=Perisic,%20Tatjana&rft.date=2017-04-05&rft.volume=12&rft.issue=4&rft.spage=e0174860&rft.pages=e0174860-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0174860&rft_dat=%3Cgale_plos_%3EA488661590%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884474610&rft_id=info:pmid/28380080&rft_galeid=A488661590&rft_doaj_id=oai_doaj_org_article_167e0b1e7a904a1e81f2cff78243966e&rfr_iscdi=true |