Application of visible and near-infrared spectroscopy to classification of Miscanthus species
The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models ba...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-04, Vol.12 (4), p.e0171360-e0171360 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0171360 |
---|---|
container_issue | 4 |
container_start_page | e0171360 |
container_title | PloS one |
container_volume | 12 |
creator | Jin, Xiaoli Chen, Xiaoling Xiao, Liang Shi, Chunhai Chen, Liang Yu, Bin Yi, Zili Yoo, Ji Hye Heo, Kweon Yu, Chang Yeon Yamada, Toshihiko Sacks, Erik J Peng, Junhua |
description | The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validation results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species. |
doi_str_mv | 10.1371/journal.pone.0171360 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1883868251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A488304410</galeid><doaj_id>oai_doaj_org_article_d389accbad374de68c5c32eba44fef85</doaj_id><sourcerecordid>A488304410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c785t-ed9ef3e940f204defe27550c2edb82b4f61525aaa69ef27e1831a955b01372fe3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0SLgujFjPlo2vRGGBY_BlYW_LqTkKYnMxk6STdJF_ffm5npLlPZC8lFQ_qcN-e8JyfLnmM0x7TC7zdu8FZ2895ZmCNcYVqiB9kprimZlQTRh0f7k-xJCBuEGOVl-Tg7IZyWNWL1afZ70fedUTIaZ3On82sTTNNBLm2bW5B-Zqz20kObhx5U9C4o19_k0eWqkyEYfRT71QQlbVwPYQ8bCE-zR1p2AZ6N37Ps56ePP86_zC4uPy_PFxczVXEWZ9DWoCnUBdIEFS1oIBVjSBFoG06aQpeYESalLBNHKsCcYlkz1qDkBNFAz7KXB92-c0GMzgSBOU8Fc8JwIpYHonVyI3pvttLfCCeN2B84vxLSR6M6EC3ltVSqkS2tUjIlV0xRAo0sCg2as6T1YbxtaLbQKrDRy24iOv1jzVqs3LVgtOKU1Eng1UHAhWhEUCaCWitnbXJYpD5yWlcJejve4t3VACGKbfIXuk5acMO-uAKXJarKhL7-B73fgpFayVRl6qtLyamdqFgUCUNFgVGi5vdQabWwNSlH0CadTwLeTQISE-FPXMkhBLH8_u3_2ctfU_bNEbsG2cV1cN2we21hChYHUKXXGTzou05gJHajcuuG2I2KGEclhb047uJd0O1s0L_dsg-b</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1883868251</pqid></control><display><type>article</type><title>Application of visible and near-infrared spectroscopy to classification of Miscanthus species</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jin, Xiaoli ; Chen, Xiaoling ; Xiao, Liang ; Shi, Chunhai ; Chen, Liang ; Yu, Bin ; Yi, Zili ; Yoo, Ji Hye ; Heo, Kweon ; Yu, Chang Yeon ; Yamada, Toshihiko ; Sacks, Erik J ; Peng, Junhua</creator><contributor>Nychas, George-John</contributor><creatorcontrib>Jin, Xiaoli ; Chen, Xiaoling ; Xiao, Liang ; Shi, Chunhai ; Chen, Liang ; Yu, Bin ; Yi, Zili ; Yoo, Ji Hye ; Heo, Kweon ; Yu, Chang Yeon ; Yamada, Toshihiko ; Sacks, Erik J ; Peng, Junhua ; Univ. of Illinois, Urbana-Champaign, Urbana, IL (United States) ; Nychas, George-John</creatorcontrib><description>The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validation results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0171360</identifier><identifier>PMID: 28369059</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>60 APPLIED LIFE SCIENCES ; absorption spectroscopy ; Agricultural production ; Agriculture ; Alternative energy sources ; BASIC BIOLOGICAL SCIENCES ; Biology and Life Sciences ; Biomass ; Calibration ; Cellulose ; Chemistry ; China ; Classification ; Computer and Information Sciences ; detergents ; Discriminant Analysis ; Feasibility studies ; Food ; Fourier transforms ; Grasses ; Identification ; Identification and classification ; Infrared radiation ; Infrared spectroscopy ; Laboratories ; Least-Squares Analysis ; leaves ; linear discriminant analysis ; Methods ; Miscanthus ; Models, Biological ; Morphology ; Multivariate analysis ; Near infrared spectroscopy ; Neural networks ; Neural Networks (Computer) ; People and Places ; Physical Sciences ; Physiology ; Plants ; Poaceae - chemistry ; Poaceae - classification ; Poaceae - growth & development ; Principal Component Analysis ; Principal components analysis ; Raw materials ; Research and Analysis Methods ; Saccharification ; Science ; Species Specificity ; Spectrophotometers ; Spectroscopy, Near-Infrared ; Spectrum Analysis ; Support Vector Machine ; Taxonomy ; Trees ; Vocabularies & taxonomies</subject><ispartof>PloS one, 2017-04, Vol.12 (4), p.e0171360-e0171360</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Jin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Jin et al 2017 Jin et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c785t-ed9ef3e940f204defe27550c2edb82b4f61525aaa69ef27e1831a955b01372fe3</citedby><cites>FETCH-LOGICAL-c785t-ed9ef3e940f204defe27550c2edb82b4f61525aaa69ef27e1831a955b01372fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378329/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378329/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28369059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1368397$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Nychas, George-John</contributor><creatorcontrib>Jin, Xiaoli</creatorcontrib><creatorcontrib>Chen, Xiaoling</creatorcontrib><creatorcontrib>Xiao, Liang</creatorcontrib><creatorcontrib>Shi, Chunhai</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Yi, Zili</creatorcontrib><creatorcontrib>Yoo, Ji Hye</creatorcontrib><creatorcontrib>Heo, Kweon</creatorcontrib><creatorcontrib>Yu, Chang Yeon</creatorcontrib><creatorcontrib>Yamada, Toshihiko</creatorcontrib><creatorcontrib>Sacks, Erik J</creatorcontrib><creatorcontrib>Peng, Junhua</creatorcontrib><creatorcontrib>Univ. of Illinois, Urbana-Champaign, Urbana, IL (United States)</creatorcontrib><title>Application of visible and near-infrared spectroscopy to classification of Miscanthus species</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validation results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>absorption spectroscopy</subject><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Alternative energy sources</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biology and Life Sciences</subject><subject>Biomass</subject><subject>Calibration</subject><subject>Cellulose</subject><subject>Chemistry</subject><subject>China</subject><subject>Classification</subject><subject>Computer and Information Sciences</subject><subject>detergents</subject><subject>Discriminant Analysis</subject><subject>Feasibility studies</subject><subject>Food</subject><subject>Fourier transforms</subject><subject>Grasses</subject><subject>Identification</subject><subject>Identification and classification</subject><subject>Infrared radiation</subject><subject>Infrared spectroscopy</subject><subject>Laboratories</subject><subject>Least-Squares Analysis</subject><subject>leaves</subject><subject>linear discriminant analysis</subject><subject>Methods</subject><subject>Miscanthus</subject><subject>Models, Biological</subject><subject>Morphology</subject><subject>Multivariate analysis</subject><subject>Near infrared spectroscopy</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>People and Places</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Plants</subject><subject>Poaceae - chemistry</subject><subject>Poaceae - classification</subject><subject>Poaceae - growth & development</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Raw materials</subject><subject>Research and Analysis Methods</subject><subject>Saccharification</subject><subject>Science</subject><subject>Species Specificity</subject><subject>Spectrophotometers</subject><subject>Spectroscopy, Near-Infrared</subject><subject>Spectrum Analysis</subject><subject>Support Vector Machine</subject><subject>Taxonomy</subject><subject>Trees</subject><subject>Vocabularies & taxonomies</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0SLgujFjPlo2vRGGBY_BlYW_LqTkKYnMxk6STdJF_ffm5npLlPZC8lFQ_qcN-e8JyfLnmM0x7TC7zdu8FZ2895ZmCNcYVqiB9kprimZlQTRh0f7k-xJCBuEGOVl-Tg7IZyWNWL1afZ70fedUTIaZ3On82sTTNNBLm2bW5B-Zqz20kObhx5U9C4o19_k0eWqkyEYfRT71QQlbVwPYQ8bCE-zR1p2AZ6N37Ps56ePP86_zC4uPy_PFxczVXEWZ9DWoCnUBdIEFS1oIBVjSBFoG06aQpeYESalLBNHKsCcYlkz1qDkBNFAz7KXB92-c0GMzgSBOU8Fc8JwIpYHonVyI3pvttLfCCeN2B84vxLSR6M6EC3ltVSqkS2tUjIlV0xRAo0sCg2as6T1YbxtaLbQKrDRy24iOv1jzVqs3LVgtOKU1Eng1UHAhWhEUCaCWitnbXJYpD5yWlcJejve4t3VACGKbfIXuk5acMO-uAKXJarKhL7-B73fgpFayVRl6qtLyamdqFgUCUNFgVGi5vdQabWwNSlH0CadTwLeTQISE-FPXMkhBLH8_u3_2ctfU_bNEbsG2cV1cN2we21hChYHUKXXGTzou05gJHajcuuG2I2KGEclhb047uJd0O1s0L_dsg-b</recordid><startdate>20170403</startdate><enddate>20170403</enddate><creator>Jin, Xiaoli</creator><creator>Chen, Xiaoling</creator><creator>Xiao, Liang</creator><creator>Shi, Chunhai</creator><creator>Chen, Liang</creator><creator>Yu, Bin</creator><creator>Yi, Zili</creator><creator>Yoo, Ji Hye</creator><creator>Heo, Kweon</creator><creator>Yu, Chang Yeon</creator><creator>Yamada, Toshihiko</creator><creator>Sacks, Erik J</creator><creator>Peng, Junhua</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170403</creationdate><title>Application of visible and near-infrared spectroscopy to classification of Miscanthus species</title><author>Jin, Xiaoli ; Chen, Xiaoling ; Xiao, Liang ; Shi, Chunhai ; Chen, Liang ; Yu, Bin ; Yi, Zili ; Yoo, Ji Hye ; Heo, Kweon ; Yu, Chang Yeon ; Yamada, Toshihiko ; Sacks, Erik J ; Peng, Junhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c785t-ed9ef3e940f204defe27550c2edb82b4f61525aaa69ef27e1831a955b01372fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>absorption spectroscopy</topic><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Alternative energy sources</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biology and Life Sciences</topic><topic>Biomass</topic><topic>Calibration</topic><topic>Cellulose</topic><topic>Chemistry</topic><topic>China</topic><topic>Classification</topic><topic>Computer and Information Sciences</topic><topic>detergents</topic><topic>Discriminant Analysis</topic><topic>Feasibility studies</topic><topic>Food</topic><topic>Fourier transforms</topic><topic>Grasses</topic><topic>Identification</topic><topic>Identification and classification</topic><topic>Infrared radiation</topic><topic>Infrared spectroscopy</topic><topic>Laboratories</topic><topic>Least-Squares Analysis</topic><topic>leaves</topic><topic>linear discriminant analysis</topic><topic>Methods</topic><topic>Miscanthus</topic><topic>Models, Biological</topic><topic>Morphology</topic><topic>Multivariate analysis</topic><topic>Near infrared spectroscopy</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>People and Places</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Plants</topic><topic>Poaceae - chemistry</topic><topic>Poaceae - classification</topic><topic>Poaceae - growth & development</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Raw materials</topic><topic>Research and Analysis Methods</topic><topic>Saccharification</topic><topic>Science</topic><topic>Species Specificity</topic><topic>Spectrophotometers</topic><topic>Spectroscopy, Near-Infrared</topic><topic>Spectrum Analysis</topic><topic>Support Vector Machine</topic><topic>Taxonomy</topic><topic>Trees</topic><topic>Vocabularies & taxonomies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Xiaoli</creatorcontrib><creatorcontrib>Chen, Xiaoling</creatorcontrib><creatorcontrib>Xiao, Liang</creatorcontrib><creatorcontrib>Shi, Chunhai</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Yi, Zili</creatorcontrib><creatorcontrib>Yoo, Ji Hye</creatorcontrib><creatorcontrib>Heo, Kweon</creatorcontrib><creatorcontrib>Yu, Chang Yeon</creatorcontrib><creatorcontrib>Yamada, Toshihiko</creatorcontrib><creatorcontrib>Sacks, Erik J</creatorcontrib><creatorcontrib>Peng, Junhua</creatorcontrib><creatorcontrib>Univ. of Illinois, Urbana-Champaign, Urbana, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Xiaoli</au><au>Chen, Xiaoling</au><au>Xiao, Liang</au><au>Shi, Chunhai</au><au>Chen, Liang</au><au>Yu, Bin</au><au>Yi, Zili</au><au>Yoo, Ji Hye</au><au>Heo, Kweon</au><au>Yu, Chang Yeon</au><au>Yamada, Toshihiko</au><au>Sacks, Erik J</au><au>Peng, Junhua</au><au>Nychas, George-John</au><aucorp>Univ. of Illinois, Urbana-Champaign, Urbana, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of visible and near-infrared spectroscopy to classification of Miscanthus species</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-04-03</date><risdate>2017</risdate><volume>12</volume><issue>4</issue><spage>e0171360</spage><epage>e0171360</epage><pages>e0171360-e0171360</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validation results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28369059</pmid><doi>10.1371/journal.pone.0171360</doi><tpages>e0171360</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-04, Vol.12 (4), p.e0171360-e0171360 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1883868251 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 60 APPLIED LIFE SCIENCES absorption spectroscopy Agricultural production Agriculture Alternative energy sources BASIC BIOLOGICAL SCIENCES Biology and Life Sciences Biomass Calibration Cellulose Chemistry China Classification Computer and Information Sciences detergents Discriminant Analysis Feasibility studies Food Fourier transforms Grasses Identification Identification and classification Infrared radiation Infrared spectroscopy Laboratories Least-Squares Analysis leaves linear discriminant analysis Methods Miscanthus Models, Biological Morphology Multivariate analysis Near infrared spectroscopy Neural networks Neural Networks (Computer) People and Places Physical Sciences Physiology Plants Poaceae - chemistry Poaceae - classification Poaceae - growth & development Principal Component Analysis Principal components analysis Raw materials Research and Analysis Methods Saccharification Science Species Specificity Spectrophotometers Spectroscopy, Near-Infrared Spectrum Analysis Support Vector Machine Taxonomy Trees Vocabularies & taxonomies |
title | Application of visible and near-infrared spectroscopy to classification of Miscanthus species |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20visible%20and%20near-infrared%20spectroscopy%20to%20classification%20of%20Miscanthus%20species&rft.jtitle=PloS%20one&rft.au=Jin,%20Xiaoli&rft.aucorp=Univ.%20of%20Illinois,%20Urbana-Champaign,%20Urbana,%20IL%20(United%20States)&rft.date=2017-04-03&rft.volume=12&rft.issue=4&rft.spage=e0171360&rft.epage=e0171360&rft.pages=e0171360-e0171360&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0171360&rft_dat=%3Cgale_plos_%3EA488304410%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1883868251&rft_id=info:pmid/28369059&rft_galeid=A488304410&rft_doaj_id=oai_doaj_org_article_d389accbad374de68c5c32eba44fef85&rfr_iscdi=true |