Application of visible and near-infrared spectroscopy to classification of Miscanthus species

The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-04, Vol.12 (4), p.e0171360-e0171360
Hauptverfasser: Jin, Xiaoli, Chen, Xiaoling, Xiao, Liang, Shi, Chunhai, Chen, Liang, Yu, Bin, Yi, Zili, Yoo, Ji Hye, Heo, Kweon, Yu, Chang Yeon, Yamada, Toshihiko, Sacks, Erik J, Peng, Junhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0171360
container_issue 4
container_start_page e0171360
container_title PloS one
container_volume 12
creator Jin, Xiaoli
Chen, Xiaoling
Xiao, Liang
Shi, Chunhai
Chen, Liang
Yu, Bin
Yi, Zili
Yoo, Ji Hye
Heo, Kweon
Yu, Chang Yeon
Yamada, Toshihiko
Sacks, Erik J
Peng, Junhua
description The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validation results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.
doi_str_mv 10.1371/journal.pone.0171360
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1883868251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A488304410</galeid><doaj_id>oai_doaj_org_article_d389accbad374de68c5c32eba44fef85</doaj_id><sourcerecordid>A488304410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c785t-ed9ef3e940f204defe27550c2edb82b4f61525aaa69ef27e1831a955b01372fe3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0SLgujFjPlo2vRGGBY_BlYW_LqTkKYnMxk6STdJF_ffm5npLlPZC8lFQ_qcN-e8JyfLnmM0x7TC7zdu8FZ2895ZmCNcYVqiB9kprimZlQTRh0f7k-xJCBuEGOVl-Tg7IZyWNWL1afZ70fedUTIaZ3On82sTTNNBLm2bW5B-Zqz20kObhx5U9C4o19_k0eWqkyEYfRT71QQlbVwPYQ8bCE-zR1p2AZ6N37Ps56ePP86_zC4uPy_PFxczVXEWZ9DWoCnUBdIEFS1oIBVjSBFoG06aQpeYESalLBNHKsCcYlkz1qDkBNFAz7KXB92-c0GMzgSBOU8Fc8JwIpYHonVyI3pvttLfCCeN2B84vxLSR6M6EC3ltVSqkS2tUjIlV0xRAo0sCg2as6T1YbxtaLbQKrDRy24iOv1jzVqs3LVgtOKU1Eng1UHAhWhEUCaCWitnbXJYpD5yWlcJejve4t3VACGKbfIXuk5acMO-uAKXJarKhL7-B73fgpFayVRl6qtLyamdqFgUCUNFgVGi5vdQabWwNSlH0CadTwLeTQISE-FPXMkhBLH8_u3_2ctfU_bNEbsG2cV1cN2we21hChYHUKXXGTzou05gJHajcuuG2I2KGEclhb047uJd0O1s0L_dsg-b</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1883868251</pqid></control><display><type>article</type><title>Application of visible and near-infrared spectroscopy to classification of Miscanthus species</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jin, Xiaoli ; Chen, Xiaoling ; Xiao, Liang ; Shi, Chunhai ; Chen, Liang ; Yu, Bin ; Yi, Zili ; Yoo, Ji Hye ; Heo, Kweon ; Yu, Chang Yeon ; Yamada, Toshihiko ; Sacks, Erik J ; Peng, Junhua</creator><contributor>Nychas, George-John</contributor><creatorcontrib>Jin, Xiaoli ; Chen, Xiaoling ; Xiao, Liang ; Shi, Chunhai ; Chen, Liang ; Yu, Bin ; Yi, Zili ; Yoo, Ji Hye ; Heo, Kweon ; Yu, Chang Yeon ; Yamada, Toshihiko ; Sacks, Erik J ; Peng, Junhua ; Univ. of Illinois, Urbana-Champaign, Urbana, IL (United States) ; Nychas, George-John</creatorcontrib><description>The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validation results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0171360</identifier><identifier>PMID: 28369059</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>60 APPLIED LIFE SCIENCES ; absorption spectroscopy ; Agricultural production ; Agriculture ; Alternative energy sources ; BASIC BIOLOGICAL SCIENCES ; Biology and Life Sciences ; Biomass ; Calibration ; Cellulose ; Chemistry ; China ; Classification ; Computer and Information Sciences ; detergents ; Discriminant Analysis ; Feasibility studies ; Food ; Fourier transforms ; Grasses ; Identification ; Identification and classification ; Infrared radiation ; Infrared spectroscopy ; Laboratories ; Least-Squares Analysis ; leaves ; linear discriminant analysis ; Methods ; Miscanthus ; Models, Biological ; Morphology ; Multivariate analysis ; Near infrared spectroscopy ; Neural networks ; Neural Networks (Computer) ; People and Places ; Physical Sciences ; Physiology ; Plants ; Poaceae - chemistry ; Poaceae - classification ; Poaceae - growth &amp; development ; Principal Component Analysis ; Principal components analysis ; Raw materials ; Research and Analysis Methods ; Saccharification ; Science ; Species Specificity ; Spectrophotometers ; Spectroscopy, Near-Infrared ; Spectrum Analysis ; Support Vector Machine ; Taxonomy ; Trees ; Vocabularies &amp; taxonomies</subject><ispartof>PloS one, 2017-04, Vol.12 (4), p.e0171360-e0171360</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Jin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Jin et al 2017 Jin et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c785t-ed9ef3e940f204defe27550c2edb82b4f61525aaa69ef27e1831a955b01372fe3</citedby><cites>FETCH-LOGICAL-c785t-ed9ef3e940f204defe27550c2edb82b4f61525aaa69ef27e1831a955b01372fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378329/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378329/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28369059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1368397$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Nychas, George-John</contributor><creatorcontrib>Jin, Xiaoli</creatorcontrib><creatorcontrib>Chen, Xiaoling</creatorcontrib><creatorcontrib>Xiao, Liang</creatorcontrib><creatorcontrib>Shi, Chunhai</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Yi, Zili</creatorcontrib><creatorcontrib>Yoo, Ji Hye</creatorcontrib><creatorcontrib>Heo, Kweon</creatorcontrib><creatorcontrib>Yu, Chang Yeon</creatorcontrib><creatorcontrib>Yamada, Toshihiko</creatorcontrib><creatorcontrib>Sacks, Erik J</creatorcontrib><creatorcontrib>Peng, Junhua</creatorcontrib><creatorcontrib>Univ. of Illinois, Urbana-Champaign, Urbana, IL (United States)</creatorcontrib><title>Application of visible and near-infrared spectroscopy to classification of Miscanthus species</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validation results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>absorption spectroscopy</subject><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Alternative energy sources</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biology and Life Sciences</subject><subject>Biomass</subject><subject>Calibration</subject><subject>Cellulose</subject><subject>Chemistry</subject><subject>China</subject><subject>Classification</subject><subject>Computer and Information Sciences</subject><subject>detergents</subject><subject>Discriminant Analysis</subject><subject>Feasibility studies</subject><subject>Food</subject><subject>Fourier transforms</subject><subject>Grasses</subject><subject>Identification</subject><subject>Identification and classification</subject><subject>Infrared radiation</subject><subject>Infrared spectroscopy</subject><subject>Laboratories</subject><subject>Least-Squares Analysis</subject><subject>leaves</subject><subject>linear discriminant analysis</subject><subject>Methods</subject><subject>Miscanthus</subject><subject>Models, Biological</subject><subject>Morphology</subject><subject>Multivariate analysis</subject><subject>Near infrared spectroscopy</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>People and Places</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Plants</subject><subject>Poaceae - chemistry</subject><subject>Poaceae - classification</subject><subject>Poaceae - growth &amp; development</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Raw materials</subject><subject>Research and Analysis Methods</subject><subject>Saccharification</subject><subject>Science</subject><subject>Species Specificity</subject><subject>Spectrophotometers</subject><subject>Spectroscopy, Near-Infrared</subject><subject>Spectrum Analysis</subject><subject>Support Vector Machine</subject><subject>Taxonomy</subject><subject>Trees</subject><subject>Vocabularies &amp; taxonomies</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0SLgujFjPlo2vRGGBY_BlYW_LqTkKYnMxk6STdJF_ffm5npLlPZC8lFQ_qcN-e8JyfLnmM0x7TC7zdu8FZ2895ZmCNcYVqiB9kprimZlQTRh0f7k-xJCBuEGOVl-Tg7IZyWNWL1afZ70fedUTIaZ3On82sTTNNBLm2bW5B-Zqz20kObhx5U9C4o19_k0eWqkyEYfRT71QQlbVwPYQ8bCE-zR1p2AZ6N37Ps56ePP86_zC4uPy_PFxczVXEWZ9DWoCnUBdIEFS1oIBVjSBFoG06aQpeYESalLBNHKsCcYlkz1qDkBNFAz7KXB92-c0GMzgSBOU8Fc8JwIpYHonVyI3pvttLfCCeN2B84vxLSR6M6EC3ltVSqkS2tUjIlV0xRAo0sCg2as6T1YbxtaLbQKrDRy24iOv1jzVqs3LVgtOKU1Eng1UHAhWhEUCaCWitnbXJYpD5yWlcJejve4t3VACGKbfIXuk5acMO-uAKXJarKhL7-B73fgpFayVRl6qtLyamdqFgUCUNFgVGi5vdQabWwNSlH0CadTwLeTQISE-FPXMkhBLH8_u3_2ctfU_bNEbsG2cV1cN2we21hChYHUKXXGTzou05gJHajcuuG2I2KGEclhb047uJd0O1s0L_dsg-b</recordid><startdate>20170403</startdate><enddate>20170403</enddate><creator>Jin, Xiaoli</creator><creator>Chen, Xiaoling</creator><creator>Xiao, Liang</creator><creator>Shi, Chunhai</creator><creator>Chen, Liang</creator><creator>Yu, Bin</creator><creator>Yi, Zili</creator><creator>Yoo, Ji Hye</creator><creator>Heo, Kweon</creator><creator>Yu, Chang Yeon</creator><creator>Yamada, Toshihiko</creator><creator>Sacks, Erik J</creator><creator>Peng, Junhua</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170403</creationdate><title>Application of visible and near-infrared spectroscopy to classification of Miscanthus species</title><author>Jin, Xiaoli ; Chen, Xiaoling ; Xiao, Liang ; Shi, Chunhai ; Chen, Liang ; Yu, Bin ; Yi, Zili ; Yoo, Ji Hye ; Heo, Kweon ; Yu, Chang Yeon ; Yamada, Toshihiko ; Sacks, Erik J ; Peng, Junhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c785t-ed9ef3e940f204defe27550c2edb82b4f61525aaa69ef27e1831a955b01372fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>absorption spectroscopy</topic><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Alternative energy sources</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biology and Life Sciences</topic><topic>Biomass</topic><topic>Calibration</topic><topic>Cellulose</topic><topic>Chemistry</topic><topic>China</topic><topic>Classification</topic><topic>Computer and Information Sciences</topic><topic>detergents</topic><topic>Discriminant Analysis</topic><topic>Feasibility studies</topic><topic>Food</topic><topic>Fourier transforms</topic><topic>Grasses</topic><topic>Identification</topic><topic>Identification and classification</topic><topic>Infrared radiation</topic><topic>Infrared spectroscopy</topic><topic>Laboratories</topic><topic>Least-Squares Analysis</topic><topic>leaves</topic><topic>linear discriminant analysis</topic><topic>Methods</topic><topic>Miscanthus</topic><topic>Models, Biological</topic><topic>Morphology</topic><topic>Multivariate analysis</topic><topic>Near infrared spectroscopy</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>People and Places</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Plants</topic><topic>Poaceae - chemistry</topic><topic>Poaceae - classification</topic><topic>Poaceae - growth &amp; development</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Raw materials</topic><topic>Research and Analysis Methods</topic><topic>Saccharification</topic><topic>Science</topic><topic>Species Specificity</topic><topic>Spectrophotometers</topic><topic>Spectroscopy, Near-Infrared</topic><topic>Spectrum Analysis</topic><topic>Support Vector Machine</topic><topic>Taxonomy</topic><topic>Trees</topic><topic>Vocabularies &amp; taxonomies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Xiaoli</creatorcontrib><creatorcontrib>Chen, Xiaoling</creatorcontrib><creatorcontrib>Xiao, Liang</creatorcontrib><creatorcontrib>Shi, Chunhai</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Yi, Zili</creatorcontrib><creatorcontrib>Yoo, Ji Hye</creatorcontrib><creatorcontrib>Heo, Kweon</creatorcontrib><creatorcontrib>Yu, Chang Yeon</creatorcontrib><creatorcontrib>Yamada, Toshihiko</creatorcontrib><creatorcontrib>Sacks, Erik J</creatorcontrib><creatorcontrib>Peng, Junhua</creatorcontrib><creatorcontrib>Univ. of Illinois, Urbana-Champaign, Urbana, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Xiaoli</au><au>Chen, Xiaoling</au><au>Xiao, Liang</au><au>Shi, Chunhai</au><au>Chen, Liang</au><au>Yu, Bin</au><au>Yi, Zili</au><au>Yoo, Ji Hye</au><au>Heo, Kweon</au><au>Yu, Chang Yeon</au><au>Yamada, Toshihiko</au><au>Sacks, Erik J</au><au>Peng, Junhua</au><au>Nychas, George-John</au><aucorp>Univ. of Illinois, Urbana-Champaign, Urbana, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of visible and near-infrared spectroscopy to classification of Miscanthus species</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-04-03</date><risdate>2017</risdate><volume>12</volume><issue>4</issue><spage>e0171360</spage><epage>e0171360</epage><pages>e0171360-e0171360</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validation results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28369059</pmid><doi>10.1371/journal.pone.0171360</doi><tpages>e0171360</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-04, Vol.12 (4), p.e0171360-e0171360
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1883868251
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 60 APPLIED LIFE SCIENCES
absorption spectroscopy
Agricultural production
Agriculture
Alternative energy sources
BASIC BIOLOGICAL SCIENCES
Biology and Life Sciences
Biomass
Calibration
Cellulose
Chemistry
China
Classification
Computer and Information Sciences
detergents
Discriminant Analysis
Feasibility studies
Food
Fourier transforms
Grasses
Identification
Identification and classification
Infrared radiation
Infrared spectroscopy
Laboratories
Least-Squares Analysis
leaves
linear discriminant analysis
Methods
Miscanthus
Models, Biological
Morphology
Multivariate analysis
Near infrared spectroscopy
Neural networks
Neural Networks (Computer)
People and Places
Physical Sciences
Physiology
Plants
Poaceae - chemistry
Poaceae - classification
Poaceae - growth & development
Principal Component Analysis
Principal components analysis
Raw materials
Research and Analysis Methods
Saccharification
Science
Species Specificity
Spectrophotometers
Spectroscopy, Near-Infrared
Spectrum Analysis
Support Vector Machine
Taxonomy
Trees
Vocabularies & taxonomies
title Application of visible and near-infrared spectroscopy to classification of Miscanthus species
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20visible%20and%20near-infrared%20spectroscopy%20to%20classification%20of%20Miscanthus%20species&rft.jtitle=PloS%20one&rft.au=Jin,%20Xiaoli&rft.aucorp=Univ.%20of%20Illinois,%20Urbana-Champaign,%20Urbana,%20IL%20(United%20States)&rft.date=2017-04-03&rft.volume=12&rft.issue=4&rft.spage=e0171360&rft.epage=e0171360&rft.pages=e0171360-e0171360&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0171360&rft_dat=%3Cgale_plos_%3EA488304410%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1883868251&rft_id=info:pmid/28369059&rft_galeid=A488304410&rft_doaj_id=oai_doaj_org_article_d389accbad374de68c5c32eba44fef85&rfr_iscdi=true