Low-cost feedback-controlled syringe pressure pumps for microfluidics applications
Microfluidics are widely used in research ranging from bioengineering and biomedical disciplines to chemistry and nanotechnology. As such, there are a large number of options for the devices used to drive and control flow through microfluidic channels. Commercially available syringe pumps are probab...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-04, Vol.12 (4), p.e0175089-e0175089 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0175089 |
---|---|
container_issue | 4 |
container_start_page | e0175089 |
container_title | PloS one |
container_volume | 12 |
creator | Lake, John R Heyde, Keith C Ruder, Warren C |
description | Microfluidics are widely used in research ranging from bioengineering and biomedical disciplines to chemistry and nanotechnology. As such, there are a large number of options for the devices used to drive and control flow through microfluidic channels. Commercially available syringe pumps are probably the most commonly used instruments for this purpose, but are relatively high-cost and have inherent limitations due to their flow profiles when they are run open-loop. Here, we present a low-cost ($110) syringe pressure pump that uses feedback control to regulate the pressure into microfluidic chips. Using an open-source microcontroller board (Arduino), we demonstrate an easily operated and programmable syringe pump that can be run using either a PID or bang-bang control method. Through feedback control of the pressure at the inlets of two microfluidic geometries, we have shown stability of our device to within ±1% of the set point using a PID control method and within ±5% of the set point using a bang-bang control method with response times of less than 1 second. This device offers a low-cost option to drive and control well-regulated pressure-driven flow through microfluidic chips. |
doi_str_mv | 10.1371/journal.pone.0175089 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1883824959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A488304370</galeid><doaj_id>oai_doaj_org_article_af3a09d28ee24c1cb45837ef27cef076</doaj_id><sourcerecordid>A488304370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-fd0579551827743713c83447bc74df950478ffc0f0023d45a8a10137b7a31e2e3</originalsourceid><addsrcrecordid>eNqNklmP0zAUhSMEYhb4BwgiISF4SPGW2HlBGo1YKlUaaVheLde5bl3cONgJzPx73DYzatA8oDx4yXePfY9Plr3AaIYpx-83fgitcrPOtzBDmJdI1I-yU1xTUlQE0cdH85PsLMYNQiUVVfU0OyGCVjWm7DS7Xvg_hfaxzw1As1T6Z1q1ffDOQZPH22DbFeRdgBiHkCbDtou58SHfWh28cYNtrI656jpnteqtb-Oz7IlRLsLzcTzPvn_6-O3yS7G4-jy_vFgUuqpJX5gGlbwuSywI5yx1RLWgjPGl5qwxdYkYF8ZoZBAitGGlEgqj1PmSK4qBAD3PXh10O-ejHO2IEgtBBWF1WSdifiAarzayC3arwq30ysr9hg8rqUJvtQOpDFWobogAIExjvWSloBwM4RoM4lXS-jCeNiy30GhIJik3EZ3-ae1arvxvWVIuGKJJ4O0oEPyvAWIvtzZqcE614If9vRmuBKckoa__QR_ubqRWKjVgW-PTuXonKi9YwlAyFSVq9gCVvgbSE6bsGJv2JwXvJgW7OMBNv1JDjHL-9fr_2asfU_bNEbsG5fp19G7YZ2YKsgOYAhZjAHNvMkZyF_07N-Qu-nKMfip7efxA90V3Wad_ATiZ_kU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1883824959</pqid></control><display><type>article</type><title>Low-cost feedback-controlled syringe pressure pumps for microfluidics applications</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Lake, John R ; Heyde, Keith C ; Ruder, Warren C</creator><contributor>Wanunu, Meni</contributor><creatorcontrib>Lake, John R ; Heyde, Keith C ; Ruder, Warren C ; Wanunu, Meni</creatorcontrib><description>Microfluidics are widely used in research ranging from bioengineering and biomedical disciplines to chemistry and nanotechnology. As such, there are a large number of options for the devices used to drive and control flow through microfluidic channels. Commercially available syringe pumps are probably the most commonly used instruments for this purpose, but are relatively high-cost and have inherent limitations due to their flow profiles when they are run open-loop. Here, we present a low-cost ($110) syringe pressure pump that uses feedback control to regulate the pressure into microfluidic chips. Using an open-source microcontroller board (Arduino), we demonstrate an easily operated and programmable syringe pump that can be run using either a PID or bang-bang control method. Through feedback control of the pressure at the inlets of two microfluidic geometries, we have shown stability of our device to within ±1% of the set point using a PID control method and within ±5% of the set point using a bang-bang control method with response times of less than 1 second. This device offers a low-cost option to drive and control well-regulated pressure-driven flow through microfluidic chips.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0175089</identifier><identifier>PMID: 28369134</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analytical chemistry ; Bioengineering ; Biology ; Computer and Information Sciences ; Control equipment ; Control methods ; Control stability ; Control systems ; Design ; Drug infusion pumps ; Engineering and Technology ; Feedback ; Feedback control ; Feedback control systems ; Flow control ; Flow profiles ; Infusion Pumps ; Inlets ; Lab-On-A-Chip Devices ; Laboratories ; Low cost ; Methods ; Microfluidics ; Microfluidics - instrumentation ; Nanotechnology ; Off-on control ; Performance evaluation ; Physical Sciences ; Pressure ; Proportional integral derivative ; Pumps ; Researchers ; Science ; Science Policy ; Sensors ; Studies ; Syringes</subject><ispartof>PloS one, 2017-04, Vol.12 (4), p.e0175089-e0175089</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Lake et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Lake et al 2017 Lake et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-fd0579551827743713c83447bc74df950478ffc0f0023d45a8a10137b7a31e2e3</citedby><cites>FETCH-LOGICAL-c692t-fd0579551827743713c83447bc74df950478ffc0f0023d45a8a10137b7a31e2e3</cites><orcidid>0000-0003-0745-9933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378403/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378403/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28369134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wanunu, Meni</contributor><creatorcontrib>Lake, John R</creatorcontrib><creatorcontrib>Heyde, Keith C</creatorcontrib><creatorcontrib>Ruder, Warren C</creatorcontrib><title>Low-cost feedback-controlled syringe pressure pumps for microfluidics applications</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Microfluidics are widely used in research ranging from bioengineering and biomedical disciplines to chemistry and nanotechnology. As such, there are a large number of options for the devices used to drive and control flow through microfluidic channels. Commercially available syringe pumps are probably the most commonly used instruments for this purpose, but are relatively high-cost and have inherent limitations due to their flow profiles when they are run open-loop. Here, we present a low-cost ($110) syringe pressure pump that uses feedback control to regulate the pressure into microfluidic chips. Using an open-source microcontroller board (Arduino), we demonstrate an easily operated and programmable syringe pump that can be run using either a PID or bang-bang control method. Through feedback control of the pressure at the inlets of two microfluidic geometries, we have shown stability of our device to within ±1% of the set point using a PID control method and within ±5% of the set point using a bang-bang control method with response times of less than 1 second. This device offers a low-cost option to drive and control well-regulated pressure-driven flow through microfluidic chips.</description><subject>Analytical chemistry</subject><subject>Bioengineering</subject><subject>Biology</subject><subject>Computer and Information Sciences</subject><subject>Control equipment</subject><subject>Control methods</subject><subject>Control stability</subject><subject>Control systems</subject><subject>Design</subject><subject>Drug infusion pumps</subject><subject>Engineering and Technology</subject><subject>Feedback</subject><subject>Feedback control</subject><subject>Feedback control systems</subject><subject>Flow control</subject><subject>Flow profiles</subject><subject>Infusion Pumps</subject><subject>Inlets</subject><subject>Lab-On-A-Chip Devices</subject><subject>Laboratories</subject><subject>Low cost</subject><subject>Methods</subject><subject>Microfluidics</subject><subject>Microfluidics - instrumentation</subject><subject>Nanotechnology</subject><subject>Off-on control</subject><subject>Performance evaluation</subject><subject>Physical Sciences</subject><subject>Pressure</subject><subject>Proportional integral derivative</subject><subject>Pumps</subject><subject>Researchers</subject><subject>Science</subject><subject>Science Policy</subject><subject>Sensors</subject><subject>Studies</subject><subject>Syringes</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNklmP0zAUhSMEYhb4BwgiISF4SPGW2HlBGo1YKlUaaVheLde5bl3cONgJzPx73DYzatA8oDx4yXePfY9Plr3AaIYpx-83fgitcrPOtzBDmJdI1I-yU1xTUlQE0cdH85PsLMYNQiUVVfU0OyGCVjWm7DS7Xvg_hfaxzw1As1T6Z1q1ffDOQZPH22DbFeRdgBiHkCbDtou58SHfWh28cYNtrI656jpnteqtb-Oz7IlRLsLzcTzPvn_6-O3yS7G4-jy_vFgUuqpJX5gGlbwuSywI5yx1RLWgjPGl5qwxdYkYF8ZoZBAitGGlEgqj1PmSK4qBAD3PXh10O-ejHO2IEgtBBWF1WSdifiAarzayC3arwq30ysr9hg8rqUJvtQOpDFWobogAIExjvWSloBwM4RoM4lXS-jCeNiy30GhIJik3EZ3-ae1arvxvWVIuGKJJ4O0oEPyvAWIvtzZqcE614If9vRmuBKckoa__QR_ubqRWKjVgW-PTuXonKi9YwlAyFSVq9gCVvgbSE6bsGJv2JwXvJgW7OMBNv1JDjHL-9fr_2asfU_bNEbsG5fp19G7YZ2YKsgOYAhZjAHNvMkZyF_07N-Qu-nKMfip7efxA90V3Wad_ATiZ_kU</recordid><startdate>20170403</startdate><enddate>20170403</enddate><creator>Lake, John R</creator><creator>Heyde, Keith C</creator><creator>Ruder, Warren C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0745-9933</orcidid></search><sort><creationdate>20170403</creationdate><title>Low-cost feedback-controlled syringe pressure pumps for microfluidics applications</title><author>Lake, John R ; Heyde, Keith C ; Ruder, Warren C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-fd0579551827743713c83447bc74df950478ffc0f0023d45a8a10137b7a31e2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical chemistry</topic><topic>Bioengineering</topic><topic>Biology</topic><topic>Computer and Information Sciences</topic><topic>Control equipment</topic><topic>Control methods</topic><topic>Control stability</topic><topic>Control systems</topic><topic>Design</topic><topic>Drug infusion pumps</topic><topic>Engineering and Technology</topic><topic>Feedback</topic><topic>Feedback control</topic><topic>Feedback control systems</topic><topic>Flow control</topic><topic>Flow profiles</topic><topic>Infusion Pumps</topic><topic>Inlets</topic><topic>Lab-On-A-Chip Devices</topic><topic>Laboratories</topic><topic>Low cost</topic><topic>Methods</topic><topic>Microfluidics</topic><topic>Microfluidics - instrumentation</topic><topic>Nanotechnology</topic><topic>Off-on control</topic><topic>Performance evaluation</topic><topic>Physical Sciences</topic><topic>Pressure</topic><topic>Proportional integral derivative</topic><topic>Pumps</topic><topic>Researchers</topic><topic>Science</topic><topic>Science Policy</topic><topic>Sensors</topic><topic>Studies</topic><topic>Syringes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lake, John R</creatorcontrib><creatorcontrib>Heyde, Keith C</creatorcontrib><creatorcontrib>Ruder, Warren C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lake, John R</au><au>Heyde, Keith C</au><au>Ruder, Warren C</au><au>Wanunu, Meni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-cost feedback-controlled syringe pressure pumps for microfluidics applications</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-04-03</date><risdate>2017</risdate><volume>12</volume><issue>4</issue><spage>e0175089</spage><epage>e0175089</epage><pages>e0175089-e0175089</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Microfluidics are widely used in research ranging from bioengineering and biomedical disciplines to chemistry and nanotechnology. As such, there are a large number of options for the devices used to drive and control flow through microfluidic channels. Commercially available syringe pumps are probably the most commonly used instruments for this purpose, but are relatively high-cost and have inherent limitations due to their flow profiles when they are run open-loop. Here, we present a low-cost ($110) syringe pressure pump that uses feedback control to regulate the pressure into microfluidic chips. Using an open-source microcontroller board (Arduino), we demonstrate an easily operated and programmable syringe pump that can be run using either a PID or bang-bang control method. Through feedback control of the pressure at the inlets of two microfluidic geometries, we have shown stability of our device to within ±1% of the set point using a PID control method and within ±5% of the set point using a bang-bang control method with response times of less than 1 second. This device offers a low-cost option to drive and control well-regulated pressure-driven flow through microfluidic chips.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28369134</pmid><doi>10.1371/journal.pone.0175089</doi><tpages>e0175089</tpages><orcidid>https://orcid.org/0000-0003-0745-9933</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-04, Vol.12 (4), p.e0175089-e0175089 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1883824959 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Analytical chemistry Bioengineering Biology Computer and Information Sciences Control equipment Control methods Control stability Control systems Design Drug infusion pumps Engineering and Technology Feedback Feedback control Feedback control systems Flow control Flow profiles Infusion Pumps Inlets Lab-On-A-Chip Devices Laboratories Low cost Methods Microfluidics Microfluidics - instrumentation Nanotechnology Off-on control Performance evaluation Physical Sciences Pressure Proportional integral derivative Pumps Researchers Science Science Policy Sensors Studies Syringes |
title | Low-cost feedback-controlled syringe pressure pumps for microfluidics applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A26%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-cost%20feedback-controlled%20syringe%20pressure%20pumps%20for%20microfluidics%20applications&rft.jtitle=PloS%20one&rft.au=Lake,%20John%20R&rft.date=2017-04-03&rft.volume=12&rft.issue=4&rft.spage=e0175089&rft.epage=e0175089&rft.pages=e0175089-e0175089&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0175089&rft_dat=%3Cgale_plos_%3EA488304370%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1883824959&rft_id=info:pmid/28369134&rft_galeid=A488304370&rft_doaj_id=oai_doaj_org_article_af3a09d28ee24c1cb45837ef27cef076&rfr_iscdi=true |