Sampling and detection of airborne influenza virus towards point-of-care applications
Airborne transmission of the influenza virus contributes significantly to the spread of this infectious pathogen, particularly over large distances when carried by aerosol droplets with long survival times. Efficient sampling of virus-loaded aerosol in combination with a low limit of detection of th...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-03, Vol.12 (3), p.e0174314 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | e0174314 |
container_title | PloS one |
container_volume | 12 |
creator | Ladhani, Laila Pardon, Gaspard Meeuws, Hanne van Wesenbeeck, Liesbeth Schmidt, Kristiane Stuyver, Lieven van der Wijngaart, Wouter |
description | Airborne transmission of the influenza virus contributes significantly to the spread of this infectious pathogen, particularly over large distances when carried by aerosol droplets with long survival times. Efficient sampling of virus-loaded aerosol in combination with a low limit of detection of the collected virus could enable rapid and early detection of airborne influenza virus at the point-of-care setting. Here, we demonstrate a successful sampling and detection of airborne influenza virus using a system specifically developed for such applications. Our system consists of a custom-made electrostatic precipitation (ESP)-based bioaerosol sampler that is coupled with downstream quantitative polymerase chain reaction (qPCR) analysis. Aerosolized viruses are sampled directly into a miniaturized collector with liquid volume of 150 μL, which constitutes a simple and direct interface with subsequent biological assays. This approach reduces sample dilution by at least one order of magnitude when compared to other liquid-based aerosol bio-samplers. Performance of our ESP-based sampler was evaluated using influenza virus-loaded sub-micron aerosols generated from both cultured and clinical samples. Despite the miniaturized collection volume, we demonstrate a collection efficiency of at least 10% and sensitive detection of a minimum of 3721 RNA copies. Furthermore, we show that an improved extraction protocol can allow viral recovery of down to 303 RNA copies and a maximum sampler collection efficiency of 47%. A device with such a performance would reduce sampling times dramatically, from a few hours with current sampling methods down to a couple of minutes with our ESP-based bioaerosol sampler. |
doi_str_mv | 10.1371/journal.pone.0174314 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1882248096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A487530190</galeid><doaj_id>oai_doaj_org_article_316cc61f2f224a51b7d0b9dc41e6b407</doaj_id><sourcerecordid>A487530190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c730t-d00ba26612678149c311405d82654eb297618532e79619d96a42716d615dc9313</originalsourceid><addsrcrecordid>eNqNk11r2zAUhs3YWD-2fzA2w2CwC2c6ki1bN4PQfQUKhXXtrZAlOVHmWK4kt91-_ZTELTFsMHQhIT3vyzlH5yTJK0AzICV8WNvBdaKd9bbTMwRlTiB_khwDIzijGJGnB-ej5MT7NUIFqSh9nhzhihSoAjhOri7Fpm9Nt0xFp1Klg5bB2C61TSqMq63rdGq6ph1091ukt8YNPg32Tjjl096aLmS2yaRwOhV99JFiq_YvkmeNaL1-Oe6nydWXzz_OvmXnF18XZ_PzTJYEhUwhVAtMKWBaVpAzSQByVKgK0yLXNWYlhaogWJeMAlOMihyXQBWFQklGgJwmb_a-fWs9HyviOVQVxnmFGI3EYk8oK9a8d2Yj3C9uheG7C-uWXLhgZKs5ASolhQY3USwKqEuFaqZkDprWOSqjV7b38ne6H-qJ2ydzPd-5_QwrDoyxchvdxzG6od5oJXUXnGgnsulLZ1Z8aW95QWhMnUSDt6OBszeD9uEfKY7UUsQs4mfZaCY3xks-z6uyIAgYitTsL1RcSm-MjD3UmHg_EbyfCCIT9H1YisF7vrj8_v_sxfWUfXfArrRow8rbdtg1zhTM96B01nunm8fKAeLbEXioBt-OAB9HIMpeH1b9UfTQ8-QPx6j_qg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1882248096</pqid></control><display><type>article</type><title>Sampling and detection of airborne influenza virus towards point-of-care applications</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ladhani, Laila ; Pardon, Gaspard ; Meeuws, Hanne ; van Wesenbeeck, Liesbeth ; Schmidt, Kristiane ; Stuyver, Lieven ; van der Wijngaart, Wouter</creator><contributor>Harrod, Kevin</contributor><creatorcontrib>Ladhani, Laila ; Pardon, Gaspard ; Meeuws, Hanne ; van Wesenbeeck, Liesbeth ; Schmidt, Kristiane ; Stuyver, Lieven ; van der Wijngaart, Wouter ; Harrod, Kevin</creatorcontrib><description>Airborne transmission of the influenza virus contributes significantly to the spread of this infectious pathogen, particularly over large distances when carried by aerosol droplets with long survival times. Efficient sampling of virus-loaded aerosol in combination with a low limit of detection of the collected virus could enable rapid and early detection of airborne influenza virus at the point-of-care setting. Here, we demonstrate a successful sampling and detection of airborne influenza virus using a system specifically developed for such applications. Our system consists of a custom-made electrostatic precipitation (ESP)-based bioaerosol sampler that is coupled with downstream quantitative polymerase chain reaction (qPCR) analysis. Aerosolized viruses are sampled directly into a miniaturized collector with liquid volume of 150 μL, which constitutes a simple and direct interface with subsequent biological assays. This approach reduces sample dilution by at least one order of magnitude when compared to other liquid-based aerosol bio-samplers. Performance of our ESP-based sampler was evaluated using influenza virus-loaded sub-micron aerosols generated from both cultured and clinical samples. Despite the miniaturized collection volume, we demonstrate a collection efficiency of at least 10% and sensitive detection of a minimum of 3721 RNA copies. Furthermore, we show that an improved extraction protocol can allow viral recovery of down to 303 RNA copies and a maximum sampler collection efficiency of 47%. A device with such a performance would reduce sampling times dramatically, from a few hours with current sampling methods down to a couple of minutes with our ESP-based bioaerosol sampler.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0174314</identifier><identifier>PMID: 28350811</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aerosols ; Aerosols - analysis ; Air Microbiology ; Analysis ; Bioaerosols ; Bioassays ; Biological assays ; Biology and life sciences ; Biosensors ; Care and treatment ; Collection ; Design ; Dilution ; Disease transmission ; Efficiency ; Electrostatic precipitation ; Environmental Monitoring - instrumentation ; Epidemics ; Equipment Design ; Humans ; Infections ; Influenza ; Influenza A Virus, H1N1 Subtype - genetics ; Influenza A Virus, H1N1 Subtype - isolation & purification ; Influenza A Virus, H3N2 Subtype - genetics ; Influenza A Virus, H3N2 Subtype - isolation & purification ; Influenza viruses ; Influenza, Human - virology ; Medicine and Health Sciences ; Microorganisms ; Pandemics ; Physical Sciences ; Point-of-Care Systems ; Polymerase chain reaction ; Precipitation (Meteorology) ; Research and analysis methods ; Ribonucleic acid ; RNA ; RNA, Viral - genetics ; RNA, Viral - isolation & purification ; Samplers ; Sampling ; Sampling methods ; Technology application ; Virology ; Viruses</subject><ispartof>PloS one, 2017-03, Vol.12 (3), p.e0174314</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Ladhani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Ladhani et al 2017 Ladhani et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c730t-d00ba26612678149c311405d82654eb297618532e79619d96a42716d615dc9313</citedby><cites>FETCH-LOGICAL-c730t-d00ba26612678149c311405d82654eb297618532e79619d96a42716d615dc9313</cites><orcidid>0000-0001-9177-1174</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5369763/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5369763/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28350811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199971$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Harrod, Kevin</contributor><creatorcontrib>Ladhani, Laila</creatorcontrib><creatorcontrib>Pardon, Gaspard</creatorcontrib><creatorcontrib>Meeuws, Hanne</creatorcontrib><creatorcontrib>van Wesenbeeck, Liesbeth</creatorcontrib><creatorcontrib>Schmidt, Kristiane</creatorcontrib><creatorcontrib>Stuyver, Lieven</creatorcontrib><creatorcontrib>van der Wijngaart, Wouter</creatorcontrib><title>Sampling and detection of airborne influenza virus towards point-of-care applications</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Airborne transmission of the influenza virus contributes significantly to the spread of this infectious pathogen, particularly over large distances when carried by aerosol droplets with long survival times. Efficient sampling of virus-loaded aerosol in combination with a low limit of detection of the collected virus could enable rapid and early detection of airborne influenza virus at the point-of-care setting. Here, we demonstrate a successful sampling and detection of airborne influenza virus using a system specifically developed for such applications. Our system consists of a custom-made electrostatic precipitation (ESP)-based bioaerosol sampler that is coupled with downstream quantitative polymerase chain reaction (qPCR) analysis. Aerosolized viruses are sampled directly into a miniaturized collector with liquid volume of 150 μL, which constitutes a simple and direct interface with subsequent biological assays. This approach reduces sample dilution by at least one order of magnitude when compared to other liquid-based aerosol bio-samplers. Performance of our ESP-based sampler was evaluated using influenza virus-loaded sub-micron aerosols generated from both cultured and clinical samples. Despite the miniaturized collection volume, we demonstrate a collection efficiency of at least 10% and sensitive detection of a minimum of 3721 RNA copies. Furthermore, we show that an improved extraction protocol can allow viral recovery of down to 303 RNA copies and a maximum sampler collection efficiency of 47%. A device with such a performance would reduce sampling times dramatically, from a few hours with current sampling methods down to a couple of minutes with our ESP-based bioaerosol sampler.</description><subject>Aerosols</subject><subject>Aerosols - analysis</subject><subject>Air Microbiology</subject><subject>Analysis</subject><subject>Bioaerosols</subject><subject>Bioassays</subject><subject>Biological assays</subject><subject>Biology and life sciences</subject><subject>Biosensors</subject><subject>Care and treatment</subject><subject>Collection</subject><subject>Design</subject><subject>Dilution</subject><subject>Disease transmission</subject><subject>Efficiency</subject><subject>Electrostatic precipitation</subject><subject>Environmental Monitoring - instrumentation</subject><subject>Epidemics</subject><subject>Equipment Design</subject><subject>Humans</subject><subject>Infections</subject><subject>Influenza</subject><subject>Influenza A Virus, H1N1 Subtype - genetics</subject><subject>Influenza A Virus, H1N1 Subtype - isolation & purification</subject><subject>Influenza A Virus, H3N2 Subtype - genetics</subject><subject>Influenza A Virus, H3N2 Subtype - isolation & purification</subject><subject>Influenza viruses</subject><subject>Influenza, Human - virology</subject><subject>Medicine and Health Sciences</subject><subject>Microorganisms</subject><subject>Pandemics</subject><subject>Physical Sciences</subject><subject>Point-of-Care Systems</subject><subject>Polymerase chain reaction</subject><subject>Precipitation (Meteorology)</subject><subject>Research and analysis methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Viral - genetics</subject><subject>RNA, Viral - isolation & purification</subject><subject>Samplers</subject><subject>Sampling</subject><subject>Sampling methods</subject><subject>Technology application</subject><subject>Virology</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11r2zAUhs3YWD-2fzA2w2CwC2c6ki1bN4PQfQUKhXXtrZAlOVHmWK4kt91-_ZTELTFsMHQhIT3vyzlH5yTJK0AzICV8WNvBdaKd9bbTMwRlTiB_khwDIzijGJGnB-ej5MT7NUIFqSh9nhzhihSoAjhOri7Fpm9Nt0xFp1Klg5bB2C61TSqMq63rdGq6ph1091ukt8YNPg32Tjjl096aLmS2yaRwOhV99JFiq_YvkmeNaL1-Oe6nydWXzz_OvmXnF18XZ_PzTJYEhUwhVAtMKWBaVpAzSQByVKgK0yLXNWYlhaogWJeMAlOMihyXQBWFQklGgJwmb_a-fWs9HyviOVQVxnmFGI3EYk8oK9a8d2Yj3C9uheG7C-uWXLhgZKs5ASolhQY3USwKqEuFaqZkDprWOSqjV7b38ne6H-qJ2ydzPd-5_QwrDoyxchvdxzG6od5oJXUXnGgnsulLZ1Z8aW95QWhMnUSDt6OBszeD9uEfKY7UUsQs4mfZaCY3xks-z6uyIAgYitTsL1RcSm-MjD3UmHg_EbyfCCIT9H1YisF7vrj8_v_sxfWUfXfArrRow8rbdtg1zhTM96B01nunm8fKAeLbEXioBt-OAB9HIMpeH1b9UfTQ8-QPx6j_qg</recordid><startdate>20170328</startdate><enddate>20170328</enddate><creator>Ladhani, Laila</creator><creator>Pardon, Gaspard</creator><creator>Meeuws, Hanne</creator><creator>van Wesenbeeck, Liesbeth</creator><creator>Schmidt, Kristiane</creator><creator>Stuyver, Lieven</creator><creator>van der Wijngaart, Wouter</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9177-1174</orcidid></search><sort><creationdate>20170328</creationdate><title>Sampling and detection of airborne influenza virus towards point-of-care applications</title><author>Ladhani, Laila ; Pardon, Gaspard ; Meeuws, Hanne ; van Wesenbeeck, Liesbeth ; Schmidt, Kristiane ; Stuyver, Lieven ; van der Wijngaart, Wouter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c730t-d00ba26612678149c311405d82654eb297618532e79619d96a42716d615dc9313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerosols</topic><topic>Aerosols - analysis</topic><topic>Air Microbiology</topic><topic>Analysis</topic><topic>Bioaerosols</topic><topic>Bioassays</topic><topic>Biological assays</topic><topic>Biology and life sciences</topic><topic>Biosensors</topic><topic>Care and treatment</topic><topic>Collection</topic><topic>Design</topic><topic>Dilution</topic><topic>Disease transmission</topic><topic>Efficiency</topic><topic>Electrostatic precipitation</topic><topic>Environmental Monitoring - instrumentation</topic><topic>Epidemics</topic><topic>Equipment Design</topic><topic>Humans</topic><topic>Infections</topic><topic>Influenza</topic><topic>Influenza A Virus, H1N1 Subtype - genetics</topic><topic>Influenza A Virus, H1N1 Subtype - isolation & purification</topic><topic>Influenza A Virus, H3N2 Subtype - genetics</topic><topic>Influenza A Virus, H3N2 Subtype - isolation & purification</topic><topic>Influenza viruses</topic><topic>Influenza, Human - virology</topic><topic>Medicine and Health Sciences</topic><topic>Microorganisms</topic><topic>Pandemics</topic><topic>Physical Sciences</topic><topic>Point-of-Care Systems</topic><topic>Polymerase chain reaction</topic><topic>Precipitation (Meteorology)</topic><topic>Research and analysis methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Viral - genetics</topic><topic>RNA, Viral - isolation & purification</topic><topic>Samplers</topic><topic>Sampling</topic><topic>Sampling methods</topic><topic>Technology application</topic><topic>Virology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ladhani, Laila</creatorcontrib><creatorcontrib>Pardon, Gaspard</creatorcontrib><creatorcontrib>Meeuws, Hanne</creatorcontrib><creatorcontrib>van Wesenbeeck, Liesbeth</creatorcontrib><creatorcontrib>Schmidt, Kristiane</creatorcontrib><creatorcontrib>Stuyver, Lieven</creatorcontrib><creatorcontrib>van der Wijngaart, Wouter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ladhani, Laila</au><au>Pardon, Gaspard</au><au>Meeuws, Hanne</au><au>van Wesenbeeck, Liesbeth</au><au>Schmidt, Kristiane</au><au>Stuyver, Lieven</au><au>van der Wijngaart, Wouter</au><au>Harrod, Kevin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sampling and detection of airborne influenza virus towards point-of-care applications</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-03-28</date><risdate>2017</risdate><volume>12</volume><issue>3</issue><spage>e0174314</spage><pages>e0174314-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Airborne transmission of the influenza virus contributes significantly to the spread of this infectious pathogen, particularly over large distances when carried by aerosol droplets with long survival times. Efficient sampling of virus-loaded aerosol in combination with a low limit of detection of the collected virus could enable rapid and early detection of airborne influenza virus at the point-of-care setting. Here, we demonstrate a successful sampling and detection of airborne influenza virus using a system specifically developed for such applications. Our system consists of a custom-made electrostatic precipitation (ESP)-based bioaerosol sampler that is coupled with downstream quantitative polymerase chain reaction (qPCR) analysis. Aerosolized viruses are sampled directly into a miniaturized collector with liquid volume of 150 μL, which constitutes a simple and direct interface with subsequent biological assays. This approach reduces sample dilution by at least one order of magnitude when compared to other liquid-based aerosol bio-samplers. Performance of our ESP-based sampler was evaluated using influenza virus-loaded sub-micron aerosols generated from both cultured and clinical samples. Despite the miniaturized collection volume, we demonstrate a collection efficiency of at least 10% and sensitive detection of a minimum of 3721 RNA copies. Furthermore, we show that an improved extraction protocol can allow viral recovery of down to 303 RNA copies and a maximum sampler collection efficiency of 47%. A device with such a performance would reduce sampling times dramatically, from a few hours with current sampling methods down to a couple of minutes with our ESP-based bioaerosol sampler.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28350811</pmid><doi>10.1371/journal.pone.0174314</doi><tpages>e0174314</tpages><orcidid>https://orcid.org/0000-0001-9177-1174</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-03, Vol.12 (3), p.e0174314 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1882248096 |
source | MEDLINE; DOAJ Directory of Open Access Journals; SWEPUB Freely available online; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aerosols Aerosols - analysis Air Microbiology Analysis Bioaerosols Bioassays Biological assays Biology and life sciences Biosensors Care and treatment Collection Design Dilution Disease transmission Efficiency Electrostatic precipitation Environmental Monitoring - instrumentation Epidemics Equipment Design Humans Infections Influenza Influenza A Virus, H1N1 Subtype - genetics Influenza A Virus, H1N1 Subtype - isolation & purification Influenza A Virus, H3N2 Subtype - genetics Influenza A Virus, H3N2 Subtype - isolation & purification Influenza viruses Influenza, Human - virology Medicine and Health Sciences Microorganisms Pandemics Physical Sciences Point-of-Care Systems Polymerase chain reaction Precipitation (Meteorology) Research and analysis methods Ribonucleic acid RNA RNA, Viral - genetics RNA, Viral - isolation & purification Samplers Sampling Sampling methods Technology application Virology Viruses |
title | Sampling and detection of airborne influenza virus towards point-of-care applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sampling%20and%20detection%20of%20airborne%20influenza%20virus%20towards%20point-of-care%20applications&rft.jtitle=PloS%20one&rft.au=Ladhani,%20Laila&rft.date=2017-03-28&rft.volume=12&rft.issue=3&rft.spage=e0174314&rft.pages=e0174314-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0174314&rft_dat=%3Cgale_plos_%3EA487530190%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1882248096&rft_id=info:pmid/28350811&rft_galeid=A487530190&rft_doaj_id=oai_doaj_org_article_316cc61f2f224a51b7d0b9dc41e6b407&rfr_iscdi=true |