The microRNA-302b-inhibited insulin-like growth factor-binding protein 2 signaling pathway induces glioma cell apoptosis by targeting nuclear factor IA

MicroRNAs are small noncoding RNAs that post-transcriptionally control the expression of genes involved in glioblastoma multiforme (GBM) development. Although miR-302b functions as a tumor suppressor, its role in GBM is still unclear. Therefore, this study comprehensively explored the roles of miR-3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-03, Vol.12 (3), p.e0173890-e0173890
Hauptverfasser: Lee, Chin-Cheng, Chen, Peng-Hsu, Ho, Kuo-Hao, Shih, Chwen-Ming, Cheng, Chia-Hsiung, Lin, Cheng-Wei, Cheng, Kur-Ta, Liu, Ann-Jeng, Chen, Ku-Chung
Format: Artikel
Sprache:eng
Schlagworte:
RNA
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0173890
container_issue 3
container_start_page e0173890
container_title PloS one
container_volume 12
creator Lee, Chin-Cheng
Chen, Peng-Hsu
Ho, Kuo-Hao
Shih, Chwen-Ming
Cheng, Chia-Hsiung
Lin, Cheng-Wei
Cheng, Kur-Ta
Liu, Ann-Jeng
Chen, Ku-Chung
description MicroRNAs are small noncoding RNAs that post-transcriptionally control the expression of genes involved in glioblastoma multiforme (GBM) development. Although miR-302b functions as a tumor suppressor, its role in GBM is still unclear. Therefore, this study comprehensively explored the roles of miR-302b-mediated gene networks in GBM cell death. We found that miR-302b levels were significantly higher in primary astrocytes than in GBM cell lines. miR-302b overexpression dose dependently reduced U87-MG cell viability and induced apoptosis through caspase-3 activation and poly(ADP ribose) polymerase degradation. A transcriptome microarray revealed 150 downregulated genes and 380 upregulated genes in miR-302b-overexpressing cells. Nuclear factor IA (NFIA), higher levels of which were significantly related to poor survival, was identified as a direct target gene of miR-302b and was involved in miR-302b-induced glioma cell death. Higher NFIA levels were observed in GBM cell lines and human tumor sections compared with astrocytes and non-tumor tissues, respectively. NFIA knockdown significantly enhanced apoptosis. We found high levels of insulin-like growth factor-binding protein 2 (IGFBP2), another miR-302b-downregulated gene, in patients with poor survival. We verified that NFIA binds to the IGFBP2 promoter and transcriptionally enhances IGFBP2 expression levels. We identified that NFIA-mediated IGFBP2 signaling pathways are involved in miR-302b-induced glioma cell death. The identification of a regulatory loop whereby miR-302b inhibits NFIA, leading to a decrease in expression of IGFBP-2, may provide novel directions for developing therapies to target glioblastoma tumorigenesis.
doi_str_mv 10.1371/journal.pone.0173890
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1879602374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A486442643</galeid><doaj_id>oai_doaj_org_article_52ec05a55d32448999e2042bd504fa72</doaj_id><sourcerecordid>A486442643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-1af328dee0b764f20530093e012d90d489e2e31c3e1d87e21b333d6b5711c8423</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEoqXwBggiISG4yOJTEucGaVVxWKmiUincWk48Sbxk7a3tUPokvC5Om1a7qBdVLmKNv_-f8diTJC8xWmBa4g9rOzojh8XWGlggXFJeoUfJIa4oyQqC6OOd9UHyzPs1QjnlRfE0OSCckrjMD5O_5z2kG904e_ZtmVFE6kybXtc6gEq18eOgTTboX5B2zl6GPm1lE6zLam2UNl26dTaANilJve5iOdcxGfpLeRXlamzAp92g7UamDQxDKrd2G6zXPq2v0iBdB2GSmLEZQLrZPV0tnydPWjl4eDH_j5Ifnz-dH3_NTk6_rI6XJ1lTkjxkWLaUcAWA6rJgLYknRKiigDBRFVKMV0CA4oYCVrwEgmtKqSrqvMS44YzQo-T1je92sF7MPfUC87IqEKEli8TqhlBWrsXW6Y10V8JKLa4D1nVCuqBj_SIn0KBc5rmihMXcVcyOGKlVjlgryynbxznbWG9ANWCCk8Oe6f6O0b3o7G-R0wJRMhm8mw2cvRjBB7HRfmqsNGDHqW7OK45Y7MMDUIQ4K-PLOUre_Ife34iZ6mQ8qzatjSU2k6lYMl4wRgpGI7W4h4qfgvjM4lttdYzvCd7vCSIT4E_o5Oi9WH0_ezh7-nOffbvD9iCH0Hs7jEFb4_dBdgPGIfDeQXt3HxiJadRuuyGmURPzqEXZq927vBPdzhb9B0c3I08</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1879602374</pqid></control><display><type>article</type><title>The microRNA-302b-inhibited insulin-like growth factor-binding protein 2 signaling pathway induces glioma cell apoptosis by targeting nuclear factor IA</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lee, Chin-Cheng ; Chen, Peng-Hsu ; Ho, Kuo-Hao ; Shih, Chwen-Ming ; Cheng, Chia-Hsiung ; Lin, Cheng-Wei ; Cheng, Kur-Ta ; Liu, Ann-Jeng ; Chen, Ku-Chung</creator><contributor>Ulasov, Ilya</contributor><creatorcontrib>Lee, Chin-Cheng ; Chen, Peng-Hsu ; Ho, Kuo-Hao ; Shih, Chwen-Ming ; Cheng, Chia-Hsiung ; Lin, Cheng-Wei ; Cheng, Kur-Ta ; Liu, Ann-Jeng ; Chen, Ku-Chung ; Ulasov, Ilya</creatorcontrib><description>MicroRNAs are small noncoding RNAs that post-transcriptionally control the expression of genes involved in glioblastoma multiforme (GBM) development. Although miR-302b functions as a tumor suppressor, its role in GBM is still unclear. Therefore, this study comprehensively explored the roles of miR-302b-mediated gene networks in GBM cell death. We found that miR-302b levels were significantly higher in primary astrocytes than in GBM cell lines. miR-302b overexpression dose dependently reduced U87-MG cell viability and induced apoptosis through caspase-3 activation and poly(ADP ribose) polymerase degradation. A transcriptome microarray revealed 150 downregulated genes and 380 upregulated genes in miR-302b-overexpressing cells. Nuclear factor IA (NFIA), higher levels of which were significantly related to poor survival, was identified as a direct target gene of miR-302b and was involved in miR-302b-induced glioma cell death. Higher NFIA levels were observed in GBM cell lines and human tumor sections compared with astrocytes and non-tumor tissues, respectively. NFIA knockdown significantly enhanced apoptosis. We found high levels of insulin-like growth factor-binding protein 2 (IGFBP2), another miR-302b-downregulated gene, in patients with poor survival. We verified that NFIA binds to the IGFBP2 promoter and transcriptionally enhances IGFBP2 expression levels. We identified that NFIA-mediated IGFBP2 signaling pathways are involved in miR-302b-induced glioma cell death. The identification of a regulatory loop whereby miR-302b inhibits NFIA, leading to a decrease in expression of IGFBP-2, may provide novel directions for developing therapies to target glioblastoma tumorigenesis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0173890</identifier><identifier>PMID: 28323865</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine diphosphate ; Apoptosis ; Apoptosis - genetics ; Apoptosis - physiology ; Astrocytes ; Astrocytes - cytology ; Astrocytes - metabolism ; Biochemistry ; Biology ; Biology and Life Sciences ; Biotechnology ; Breast cancer ; Caspase ; Caspase-3 ; Cell culture ; Cell death ; Cell growth ; Cell Line, Tumor ; Cell Survival - genetics ; DNA microarrays ; Down-Regulation ; Gene expression ; Gene Knockdown Techniques ; Gene Regulatory Networks ; Genes ; Genetic aspects ; Genomics ; Glioblastoma ; Glioblastoma - genetics ; Glioblastoma - metabolism ; Glioblastoma - pathology ; Glioblastoma multiforme ; Glioblastomas ; Glioma ; Glioma - genetics ; Glioma - metabolism ; Glioma - pathology ; Glioma cells ; Humans ; Immunoglobulins ; Insulin ; Insulin-Like Growth Factor Binding Protein 2 - antagonists &amp; inhibitors ; Insulin-Like Growth Factor Binding Protein 2 - genetics ; Insulin-Like Growth Factor Binding Protein 2 - metabolism ; Insulin-like growth factor I ; Insulin-like growth factor-binding protein 2 ; Insulin-like growth factors ; Kinases ; Medical research ; Medicine ; Medicine and Health Sciences ; MicroRNA ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Mortality ; NFI Transcription Factors - antagonists &amp; inhibitors ; NFI Transcription Factors - genetics ; NFI Transcription Factors - metabolism ; Pharmacy ; Post-transcription ; Promoter Regions, Genetic ; Proteins ; Research and Analysis Methods ; Ribonucleic acid ; Ribose ; RNA ; Signal Transduction ; Signaling ; Stem cells ; Survival ; Target recognition ; Tissues ; Transcription factors ; Transcriptome ; Tumor cell lines ; Tumor suppressor genes ; Tumorigenesis</subject><ispartof>PloS one, 2017-03, Vol.12 (3), p.e0173890-e0173890</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Lee et al 2017 Lee et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-1af328dee0b764f20530093e012d90d489e2e31c3e1d87e21b333d6b5711c8423</citedby><cites>FETCH-LOGICAL-c725t-1af328dee0b764f20530093e012d90d489e2e31c3e1d87e21b333d6b5711c8423</cites><orcidid>0000-0002-4696-3924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5360322/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5360322/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28323865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ulasov, Ilya</contributor><creatorcontrib>Lee, Chin-Cheng</creatorcontrib><creatorcontrib>Chen, Peng-Hsu</creatorcontrib><creatorcontrib>Ho, Kuo-Hao</creatorcontrib><creatorcontrib>Shih, Chwen-Ming</creatorcontrib><creatorcontrib>Cheng, Chia-Hsiung</creatorcontrib><creatorcontrib>Lin, Cheng-Wei</creatorcontrib><creatorcontrib>Cheng, Kur-Ta</creatorcontrib><creatorcontrib>Liu, Ann-Jeng</creatorcontrib><creatorcontrib>Chen, Ku-Chung</creatorcontrib><title>The microRNA-302b-inhibited insulin-like growth factor-binding protein 2 signaling pathway induces glioma cell apoptosis by targeting nuclear factor IA</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>MicroRNAs are small noncoding RNAs that post-transcriptionally control the expression of genes involved in glioblastoma multiforme (GBM) development. Although miR-302b functions as a tumor suppressor, its role in GBM is still unclear. Therefore, this study comprehensively explored the roles of miR-302b-mediated gene networks in GBM cell death. We found that miR-302b levels were significantly higher in primary astrocytes than in GBM cell lines. miR-302b overexpression dose dependently reduced U87-MG cell viability and induced apoptosis through caspase-3 activation and poly(ADP ribose) polymerase degradation. A transcriptome microarray revealed 150 downregulated genes and 380 upregulated genes in miR-302b-overexpressing cells. Nuclear factor IA (NFIA), higher levels of which were significantly related to poor survival, was identified as a direct target gene of miR-302b and was involved in miR-302b-induced glioma cell death. Higher NFIA levels were observed in GBM cell lines and human tumor sections compared with astrocytes and non-tumor tissues, respectively. NFIA knockdown significantly enhanced apoptosis. We found high levels of insulin-like growth factor-binding protein 2 (IGFBP2), another miR-302b-downregulated gene, in patients with poor survival. We verified that NFIA binds to the IGFBP2 promoter and transcriptionally enhances IGFBP2 expression levels. We identified that NFIA-mediated IGFBP2 signaling pathways are involved in miR-302b-induced glioma cell death. The identification of a regulatory loop whereby miR-302b inhibits NFIA, leading to a decrease in expression of IGFBP-2, may provide novel directions for developing therapies to target glioblastoma tumorigenesis.</description><subject>Adenosine diphosphate</subject><subject>Apoptosis</subject><subject>Apoptosis - genetics</subject><subject>Apoptosis - physiology</subject><subject>Astrocytes</subject><subject>Astrocytes - cytology</subject><subject>Astrocytes - metabolism</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Biotechnology</subject><subject>Breast cancer</subject><subject>Caspase</subject><subject>Caspase-3</subject><subject>Cell culture</subject><subject>Cell death</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - genetics</subject><subject>DNA microarrays</subject><subject>Down-Regulation</subject><subject>Gene expression</subject><subject>Gene Knockdown Techniques</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Glioblastoma</subject><subject>Glioblastoma - genetics</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma - pathology</subject><subject>Glioblastoma multiforme</subject><subject>Glioblastomas</subject><subject>Glioma</subject><subject>Glioma - genetics</subject><subject>Glioma - metabolism</subject><subject>Glioma - pathology</subject><subject>Glioma cells</subject><subject>Humans</subject><subject>Immunoglobulins</subject><subject>Insulin</subject><subject>Insulin-Like Growth Factor Binding Protein 2 - antagonists &amp; inhibitors</subject><subject>Insulin-Like Growth Factor Binding Protein 2 - genetics</subject><subject>Insulin-Like Growth Factor Binding Protein 2 - metabolism</subject><subject>Insulin-like growth factor I</subject><subject>Insulin-like growth factor-binding protein 2</subject><subject>Insulin-like growth factors</subject><subject>Kinases</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Mortality</subject><subject>NFI Transcription Factors - antagonists &amp; inhibitors</subject><subject>NFI Transcription Factors - genetics</subject><subject>NFI Transcription Factors - metabolism</subject><subject>Pharmacy</subject><subject>Post-transcription</subject><subject>Promoter Regions, Genetic</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Ribonucleic acid</subject><subject>Ribose</subject><subject>RNA</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Stem cells</subject><subject>Survival</subject><subject>Target recognition</subject><subject>Tissues</subject><subject>Transcription factors</subject><subject>Transcriptome</subject><subject>Tumor cell lines</subject><subject>Tumor suppressor genes</subject><subject>Tumorigenesis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEoqXwBggiISG4yOJTEucGaVVxWKmiUincWk48Sbxk7a3tUPokvC5Om1a7qBdVLmKNv_-f8diTJC8xWmBa4g9rOzojh8XWGlggXFJeoUfJIa4oyQqC6OOd9UHyzPs1QjnlRfE0OSCckrjMD5O_5z2kG904e_ZtmVFE6kybXtc6gEq18eOgTTboX5B2zl6GPm1lE6zLam2UNl26dTaANilJve5iOdcxGfpLeRXlamzAp92g7UamDQxDKrd2G6zXPq2v0iBdB2GSmLEZQLrZPV0tnydPWjl4eDH_j5Ifnz-dH3_NTk6_rI6XJ1lTkjxkWLaUcAWA6rJgLYknRKiigDBRFVKMV0CA4oYCVrwEgmtKqSrqvMS44YzQo-T1je92sF7MPfUC87IqEKEli8TqhlBWrsXW6Y10V8JKLa4D1nVCuqBj_SIn0KBc5rmihMXcVcyOGKlVjlgryynbxznbWG9ANWCCk8Oe6f6O0b3o7G-R0wJRMhm8mw2cvRjBB7HRfmqsNGDHqW7OK45Y7MMDUIQ4K-PLOUre_Ife34iZ6mQ8qzatjSU2k6lYMl4wRgpGI7W4h4qfgvjM4lttdYzvCd7vCSIT4E_o5Oi9WH0_ezh7-nOffbvD9iCH0Hs7jEFb4_dBdgPGIfDeQXt3HxiJadRuuyGmURPzqEXZq927vBPdzhb9B0c3I08</recordid><startdate>20170321</startdate><enddate>20170321</enddate><creator>Lee, Chin-Cheng</creator><creator>Chen, Peng-Hsu</creator><creator>Ho, Kuo-Hao</creator><creator>Shih, Chwen-Ming</creator><creator>Cheng, Chia-Hsiung</creator><creator>Lin, Cheng-Wei</creator><creator>Cheng, Kur-Ta</creator><creator>Liu, Ann-Jeng</creator><creator>Chen, Ku-Chung</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4696-3924</orcidid></search><sort><creationdate>20170321</creationdate><title>The microRNA-302b-inhibited insulin-like growth factor-binding protein 2 signaling pathway induces glioma cell apoptosis by targeting nuclear factor IA</title><author>Lee, Chin-Cheng ; Chen, Peng-Hsu ; Ho, Kuo-Hao ; Shih, Chwen-Ming ; Cheng, Chia-Hsiung ; Lin, Cheng-Wei ; Cheng, Kur-Ta ; Liu, Ann-Jeng ; Chen, Ku-Chung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-1af328dee0b764f20530093e012d90d489e2e31c3e1d87e21b333d6b5711c8423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adenosine diphosphate</topic><topic>Apoptosis</topic><topic>Apoptosis - genetics</topic><topic>Apoptosis - physiology</topic><topic>Astrocytes</topic><topic>Astrocytes - cytology</topic><topic>Astrocytes - metabolism</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Biotechnology</topic><topic>Breast cancer</topic><topic>Caspase</topic><topic>Caspase-3</topic><topic>Cell culture</topic><topic>Cell death</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - genetics</topic><topic>DNA microarrays</topic><topic>Down-Regulation</topic><topic>Gene expression</topic><topic>Gene Knockdown Techniques</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Glioblastoma</topic><topic>Glioblastoma - genetics</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma - pathology</topic><topic>Glioblastoma multiforme</topic><topic>Glioblastomas</topic><topic>Glioma</topic><topic>Glioma - genetics</topic><topic>Glioma - metabolism</topic><topic>Glioma - pathology</topic><topic>Glioma cells</topic><topic>Humans</topic><topic>Immunoglobulins</topic><topic>Insulin</topic><topic>Insulin-Like Growth Factor Binding Protein 2 - antagonists &amp; inhibitors</topic><topic>Insulin-Like Growth Factor Binding Protein 2 - genetics</topic><topic>Insulin-Like Growth Factor Binding Protein 2 - metabolism</topic><topic>Insulin-like growth factor I</topic><topic>Insulin-like growth factor-binding protein 2</topic><topic>Insulin-like growth factors</topic><topic>Kinases</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Mortality</topic><topic>NFI Transcription Factors - antagonists &amp; inhibitors</topic><topic>NFI Transcription Factors - genetics</topic><topic>NFI Transcription Factors - metabolism</topic><topic>Pharmacy</topic><topic>Post-transcription</topic><topic>Promoter Regions, Genetic</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Ribonucleic acid</topic><topic>Ribose</topic><topic>RNA</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Stem cells</topic><topic>Survival</topic><topic>Target recognition</topic><topic>Tissues</topic><topic>Transcription factors</topic><topic>Transcriptome</topic><topic>Tumor cell lines</topic><topic>Tumor suppressor genes</topic><topic>Tumorigenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Chin-Cheng</creatorcontrib><creatorcontrib>Chen, Peng-Hsu</creatorcontrib><creatorcontrib>Ho, Kuo-Hao</creatorcontrib><creatorcontrib>Shih, Chwen-Ming</creatorcontrib><creatorcontrib>Cheng, Chia-Hsiung</creatorcontrib><creatorcontrib>Lin, Cheng-Wei</creatorcontrib><creatorcontrib>Cheng, Kur-Ta</creatorcontrib><creatorcontrib>Liu, Ann-Jeng</creatorcontrib><creatorcontrib>Chen, Ku-Chung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Chin-Cheng</au><au>Chen, Peng-Hsu</au><au>Ho, Kuo-Hao</au><au>Shih, Chwen-Ming</au><au>Cheng, Chia-Hsiung</au><au>Lin, Cheng-Wei</au><au>Cheng, Kur-Ta</au><au>Liu, Ann-Jeng</au><au>Chen, Ku-Chung</au><au>Ulasov, Ilya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The microRNA-302b-inhibited insulin-like growth factor-binding protein 2 signaling pathway induces glioma cell apoptosis by targeting nuclear factor IA</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-03-21</date><risdate>2017</risdate><volume>12</volume><issue>3</issue><spage>e0173890</spage><epage>e0173890</epage><pages>e0173890-e0173890</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>MicroRNAs are small noncoding RNAs that post-transcriptionally control the expression of genes involved in glioblastoma multiforme (GBM) development. Although miR-302b functions as a tumor suppressor, its role in GBM is still unclear. Therefore, this study comprehensively explored the roles of miR-302b-mediated gene networks in GBM cell death. We found that miR-302b levels were significantly higher in primary astrocytes than in GBM cell lines. miR-302b overexpression dose dependently reduced U87-MG cell viability and induced apoptosis through caspase-3 activation and poly(ADP ribose) polymerase degradation. A transcriptome microarray revealed 150 downregulated genes and 380 upregulated genes in miR-302b-overexpressing cells. Nuclear factor IA (NFIA), higher levels of which were significantly related to poor survival, was identified as a direct target gene of miR-302b and was involved in miR-302b-induced glioma cell death. Higher NFIA levels were observed in GBM cell lines and human tumor sections compared with astrocytes and non-tumor tissues, respectively. NFIA knockdown significantly enhanced apoptosis. We found high levels of insulin-like growth factor-binding protein 2 (IGFBP2), another miR-302b-downregulated gene, in patients with poor survival. We verified that NFIA binds to the IGFBP2 promoter and transcriptionally enhances IGFBP2 expression levels. We identified that NFIA-mediated IGFBP2 signaling pathways are involved in miR-302b-induced glioma cell death. The identification of a regulatory loop whereby miR-302b inhibits NFIA, leading to a decrease in expression of IGFBP-2, may provide novel directions for developing therapies to target glioblastoma tumorigenesis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28323865</pmid><doi>10.1371/journal.pone.0173890</doi><tpages>e0173890</tpages><orcidid>https://orcid.org/0000-0002-4696-3924</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-03, Vol.12 (3), p.e0173890-e0173890
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1879602374
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adenosine diphosphate
Apoptosis
Apoptosis - genetics
Apoptosis - physiology
Astrocytes
Astrocytes - cytology
Astrocytes - metabolism
Biochemistry
Biology
Biology and Life Sciences
Biotechnology
Breast cancer
Caspase
Caspase-3
Cell culture
Cell death
Cell growth
Cell Line, Tumor
Cell Survival - genetics
DNA microarrays
Down-Regulation
Gene expression
Gene Knockdown Techniques
Gene Regulatory Networks
Genes
Genetic aspects
Genomics
Glioblastoma
Glioblastoma - genetics
Glioblastoma - metabolism
Glioblastoma - pathology
Glioblastoma multiforme
Glioblastomas
Glioma
Glioma - genetics
Glioma - metabolism
Glioma - pathology
Glioma cells
Humans
Immunoglobulins
Insulin
Insulin-Like Growth Factor Binding Protein 2 - antagonists & inhibitors
Insulin-Like Growth Factor Binding Protein 2 - genetics
Insulin-Like Growth Factor Binding Protein 2 - metabolism
Insulin-like growth factor I
Insulin-like growth factor-binding protein 2
Insulin-like growth factors
Kinases
Medical research
Medicine
Medicine and Health Sciences
MicroRNA
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
Mortality
NFI Transcription Factors - antagonists & inhibitors
NFI Transcription Factors - genetics
NFI Transcription Factors - metabolism
Pharmacy
Post-transcription
Promoter Regions, Genetic
Proteins
Research and Analysis Methods
Ribonucleic acid
Ribose
RNA
Signal Transduction
Signaling
Stem cells
Survival
Target recognition
Tissues
Transcription factors
Transcriptome
Tumor cell lines
Tumor suppressor genes
Tumorigenesis
title The microRNA-302b-inhibited insulin-like growth factor-binding protein 2 signaling pathway induces glioma cell apoptosis by targeting nuclear factor IA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A38%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20microRNA-302b-inhibited%20insulin-like%20growth%20factor-binding%20protein%202%20signaling%20pathway%20induces%20glioma%20cell%20apoptosis%20by%20targeting%20nuclear%20factor%20IA&rft.jtitle=PloS%20one&rft.au=Lee,%20Chin-Cheng&rft.date=2017-03-21&rft.volume=12&rft.issue=3&rft.spage=e0173890&rft.epage=e0173890&rft.pages=e0173890-e0173890&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0173890&rft_dat=%3Cgale_plos_%3EA486442643%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1879602374&rft_id=info:pmid/28323865&rft_galeid=A486442643&rft_doaj_id=oai_doaj_org_article_52ec05a55d32448999e2042bd504fa72&rfr_iscdi=true