The performance of MR perfusion-weighted imaging for the differentiation of high-grade glioma from primary central nervous system lymphoma: A systematic review and meta-analysis
It is always a great challenge to distinguish high-grade glioma (HGG) from primary central nervous system lymphoma (PCNSL). We conducted a meta-analysis to assess the performance of MR perfusion-weighted imaging (PWI) in differentiating HGG from PCNSL. The heterogeneity and threshold effect were eva...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-03, Vol.12 (3), p.e0173430-e0173430 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0173430 |
---|---|
container_issue | 3 |
container_start_page | e0173430 |
container_title | PloS one |
container_volume | 12 |
creator | Xu, Weilin Wang, Qun Shao, Anwen Xu, Bainan Zhang, Jianmin |
description | It is always a great challenge to distinguish high-grade glioma (HGG) from primary central nervous system lymphoma (PCNSL). We conducted a meta-analysis to assess the performance of MR perfusion-weighted imaging (PWI) in differentiating HGG from PCNSL. The heterogeneity and threshold effect were evaluated, and the sensitivity (SEN), specificity (SPE) and areas under summary receiver operating characteristic curve (SROC) were calculated. Fourteen studies with a total of 598 participants were included in this meta-analysis. The results indicated that PWI had a high level of accuracy (area under the curve (AUC) = 0.9415) for differentiating HGG from PCNSL by using the best parameter from each study. The dynamic susceptibility-contrast (DSC) technique might be an optimal index for distinguishing HGGs from PCNSLs (AUC = 0.9812). Furthermore, the DSC had the best sensitivity 0.963 (95%CI: 0.924, 0.986), whereas the arterial spin-labeling (ASL) displayed the best specificity 0.896 (95% CI: 0.781, 0.963) among those techniques. However, the variability of the optimal thresholds from the included studies suggests that further evaluation and standardization are needed before the techniques can be extensively clinically used. |
doi_str_mv | 10.1371/journal.pone.0173430 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1878126361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A485757818</galeid><doaj_id>oai_doaj_org_article_ec32a30c230841308276a34110100c66</doaj_id><sourcerecordid>A485757818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c721t-ee81d6cabf7561007f954ebd7a6b60fbc350d46cc859266d1e2f487d53637a173</originalsourceid><addsrcrecordid>eNqNk91u1DAQhSMEoqXwBggsISG4yGLHiZ1wgVRV_FQqqlQKt5bXGSeuknixky37WLwhs21adVEvqkhJNPnOycx4JkleMrpgXLIPF34Kg-4WKz_AgjLJc04fJfus4lkqMsof33nfS57FeEFpwUshniZ7Wckpyyu2n_w9b4GsIFgfej0YIN6S72dXkSk6P6SX4Jp2hJq4XjduaAiSZERR7ayFAMPo9IjgVtgimjZB10CazvleExt8T1YBtWFDDMJBd2SAsPZTJHETR-hJt-lXLcIfyeEcQkNDAqwdXBI91KSHUacai91EF58nT6zuIryYnwfJzy-fz4--pSenX4-PDk9SIzM2pgAlq4XRSysLwSiVtipyWNZSi6Wgdml4QetcGFMWVSZEzSCzeSnrggsuNbbzIHl97bvqfFRzt6NipSxZJrhgSBxfE7XXF2quUnnt1FXAh0bpgKV0oMDwTHNqMk7LnOEtk0LznDGKqRkh0OvT_Ldp2UM9t2rHdPfL4FrV-LUqeJFnVYYG72aD4H9PEEfVu2ig6_QA2GzMu2SyqCqaPwCVCFcVTslB8uY_9P5GzFSjsVY3WI8pmq2pOszLQhZIbr0W91B41dA7g1NsHcZ3BO93BMiM8Gds9BSjOv5x9nD29Ncu-_YO24Luxjb6btqOcdwF82vQBB9jAHt7Hoyq7RLedENtl1DNS4iyV3fP8lZ0s3X8H9yXLp4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1878126361</pqid></control><display><type>article</type><title>The performance of MR perfusion-weighted imaging for the differentiation of high-grade glioma from primary central nervous system lymphoma: A systematic review and meta-analysis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Xu, Weilin ; Wang, Qun ; Shao, Anwen ; Xu, Bainan ; Zhang, Jianmin</creator><contributor>Sherman, Jonathan H.</contributor><creatorcontrib>Xu, Weilin ; Wang, Qun ; Shao, Anwen ; Xu, Bainan ; Zhang, Jianmin ; Sherman, Jonathan H.</creatorcontrib><description>It is always a great challenge to distinguish high-grade glioma (HGG) from primary central nervous system lymphoma (PCNSL). We conducted a meta-analysis to assess the performance of MR perfusion-weighted imaging (PWI) in differentiating HGG from PCNSL. The heterogeneity and threshold effect were evaluated, and the sensitivity (SEN), specificity (SPE) and areas under summary receiver operating characteristic curve (SROC) were calculated. Fourteen studies with a total of 598 participants were included in this meta-analysis. The results indicated that PWI had a high level of accuracy (area under the curve (AUC) = 0.9415) for differentiating HGG from PCNSL by using the best parameter from each study. The dynamic susceptibility-contrast (DSC) technique might be an optimal index for distinguishing HGGs from PCNSLs (AUC = 0.9812). Furthermore, the DSC had the best sensitivity 0.963 (95%CI: 0.924, 0.986), whereas the arterial spin-labeling (ASL) displayed the best specificity 0.896 (95% CI: 0.781, 0.963) among those techniques. However, the variability of the optimal thresholds from the included studies suggests that further evaluation and standardization are needed before the techniques can be extensively clinically used.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0173430</identifier><identifier>PMID: 28301491</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Adult ; Analysis ; Biology and Life Sciences ; Blood ; Brain cancer ; Brain Neoplasms - diagnostic imaging ; Care and treatment ; Central nervous system ; Central Nervous System Neoplasms - diagnostic imaging ; Diagnosis ; Diagnosis, Differential ; Female ; Gangrene ; Glioma ; Glioma - diagnostic imaging ; Gliomas ; Health aspects ; Humans ; Lymphoma ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Medical ethics ; Medicine and Health Sciences ; Meta-analysis ; Metastasis ; Nervous system ; Neurosurgery ; NMR ; Non-Hodgkin's lymphomas ; Nuclear magnetic resonance ; Perfusion ; Perfusion Imaging ; Physical Sciences ; Quality ; Research and Analysis Methods ; Sensitivity ; Sensitivity analysis ; Spectrum analysis ; Spin labeling ; Standardization ; Studies ; Systematic review ; Tumors</subject><ispartof>PloS one, 2017-03, Vol.12 (3), p.e0173430-e0173430</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Xu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Xu et al 2017 Xu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c721t-ee81d6cabf7561007f954ebd7a6b60fbc350d46cc859266d1e2f487d53637a173</citedby><cites>FETCH-LOGICAL-c721t-ee81d6cabf7561007f954ebd7a6b60fbc350d46cc859266d1e2f487d53637a173</cites><orcidid>0000-0003-2141-6438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5354292/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5354292/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28301491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sherman, Jonathan H.</contributor><creatorcontrib>Xu, Weilin</creatorcontrib><creatorcontrib>Wang, Qun</creatorcontrib><creatorcontrib>Shao, Anwen</creatorcontrib><creatorcontrib>Xu, Bainan</creatorcontrib><creatorcontrib>Zhang, Jianmin</creatorcontrib><title>The performance of MR perfusion-weighted imaging for the differentiation of high-grade glioma from primary central nervous system lymphoma: A systematic review and meta-analysis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>It is always a great challenge to distinguish high-grade glioma (HGG) from primary central nervous system lymphoma (PCNSL). We conducted a meta-analysis to assess the performance of MR perfusion-weighted imaging (PWI) in differentiating HGG from PCNSL. The heterogeneity and threshold effect were evaluated, and the sensitivity (SEN), specificity (SPE) and areas under summary receiver operating characteristic curve (SROC) were calculated. Fourteen studies with a total of 598 participants were included in this meta-analysis. The results indicated that PWI had a high level of accuracy (area under the curve (AUC) = 0.9415) for differentiating HGG from PCNSL by using the best parameter from each study. The dynamic susceptibility-contrast (DSC) technique might be an optimal index for distinguishing HGGs from PCNSLs (AUC = 0.9812). Furthermore, the DSC had the best sensitivity 0.963 (95%CI: 0.924, 0.986), whereas the arterial spin-labeling (ASL) displayed the best specificity 0.896 (95% CI: 0.781, 0.963) among those techniques. However, the variability of the optimal thresholds from the included studies suggests that further evaluation and standardization are needed before the techniques can be extensively clinically used.</description><subject>Accuracy</subject><subject>Adult</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Blood</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Care and treatment</subject><subject>Central nervous system</subject><subject>Central Nervous System Neoplasms - diagnostic imaging</subject><subject>Diagnosis</subject><subject>Diagnosis, Differential</subject><subject>Female</subject><subject>Gangrene</subject><subject>Glioma</subject><subject>Glioma - diagnostic imaging</subject><subject>Gliomas</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Lymphoma</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical ethics</subject><subject>Medicine and Health Sciences</subject><subject>Meta-analysis</subject><subject>Metastasis</subject><subject>Nervous system</subject><subject>Neurosurgery</subject><subject>NMR</subject><subject>Non-Hodgkin's lymphomas</subject><subject>Nuclear magnetic resonance</subject><subject>Perfusion</subject><subject>Perfusion Imaging</subject><subject>Physical Sciences</subject><subject>Quality</subject><subject>Research and Analysis Methods</subject><subject>Sensitivity</subject><subject>Sensitivity analysis</subject><subject>Spectrum analysis</subject><subject>Spin labeling</subject><subject>Standardization</subject><subject>Studies</subject><subject>Systematic review</subject><subject>Tumors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk91u1DAQhSMEoqXwBggsISG4yGLHiZ1wgVRV_FQqqlQKt5bXGSeuknixky37WLwhs21adVEvqkhJNPnOycx4JkleMrpgXLIPF34Kg-4WKz_AgjLJc04fJfus4lkqMsof33nfS57FeEFpwUshniZ7Wckpyyu2n_w9b4GsIFgfej0YIN6S72dXkSk6P6SX4Jp2hJq4XjduaAiSZERR7ayFAMPo9IjgVtgimjZB10CazvleExt8T1YBtWFDDMJBd2SAsPZTJHETR-hJt-lXLcIfyeEcQkNDAqwdXBI91KSHUacai91EF58nT6zuIryYnwfJzy-fz4--pSenX4-PDk9SIzM2pgAlq4XRSysLwSiVtipyWNZSi6Wgdml4QetcGFMWVSZEzSCzeSnrggsuNbbzIHl97bvqfFRzt6NipSxZJrhgSBxfE7XXF2quUnnt1FXAh0bpgKV0oMDwTHNqMk7LnOEtk0LznDGKqRkh0OvT_Ldp2UM9t2rHdPfL4FrV-LUqeJFnVYYG72aD4H9PEEfVu2ig6_QA2GzMu2SyqCqaPwCVCFcVTslB8uY_9P5GzFSjsVY3WI8pmq2pOszLQhZIbr0W91B41dA7g1NsHcZ3BO93BMiM8Gds9BSjOv5x9nD29Ncu-_YO24Luxjb6btqOcdwF82vQBB9jAHt7Hoyq7RLedENtl1DNS4iyV3fP8lZ0s3X8H9yXLp4</recordid><startdate>20170316</startdate><enddate>20170316</enddate><creator>Xu, Weilin</creator><creator>Wang, Qun</creator><creator>Shao, Anwen</creator><creator>Xu, Bainan</creator><creator>Zhang, Jianmin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2141-6438</orcidid></search><sort><creationdate>20170316</creationdate><title>The performance of MR perfusion-weighted imaging for the differentiation of high-grade glioma from primary central nervous system lymphoma: A systematic review and meta-analysis</title><author>Xu, Weilin ; Wang, Qun ; Shao, Anwen ; Xu, Bainan ; Zhang, Jianmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c721t-ee81d6cabf7561007f954ebd7a6b60fbc350d46cc859266d1e2f487d53637a173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Adult</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Blood</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Care and treatment</topic><topic>Central nervous system</topic><topic>Central Nervous System Neoplasms - diagnostic imaging</topic><topic>Diagnosis</topic><topic>Diagnosis, Differential</topic><topic>Female</topic><topic>Gangrene</topic><topic>Glioma</topic><topic>Glioma - diagnostic imaging</topic><topic>Gliomas</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Lymphoma</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical ethics</topic><topic>Medicine and Health Sciences</topic><topic>Meta-analysis</topic><topic>Metastasis</topic><topic>Nervous system</topic><topic>Neurosurgery</topic><topic>NMR</topic><topic>Non-Hodgkin's lymphomas</topic><topic>Nuclear magnetic resonance</topic><topic>Perfusion</topic><topic>Perfusion Imaging</topic><topic>Physical Sciences</topic><topic>Quality</topic><topic>Research and Analysis Methods</topic><topic>Sensitivity</topic><topic>Sensitivity analysis</topic><topic>Spectrum analysis</topic><topic>Spin labeling</topic><topic>Standardization</topic><topic>Studies</topic><topic>Systematic review</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Weilin</creatorcontrib><creatorcontrib>Wang, Qun</creatorcontrib><creatorcontrib>Shao, Anwen</creatorcontrib><creatorcontrib>Xu, Bainan</creatorcontrib><creatorcontrib>Zhang, Jianmin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Weilin</au><au>Wang, Qun</au><au>Shao, Anwen</au><au>Xu, Bainan</au><au>Zhang, Jianmin</au><au>Sherman, Jonathan H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The performance of MR perfusion-weighted imaging for the differentiation of high-grade glioma from primary central nervous system lymphoma: A systematic review and meta-analysis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-03-16</date><risdate>2017</risdate><volume>12</volume><issue>3</issue><spage>e0173430</spage><epage>e0173430</epage><pages>e0173430-e0173430</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>It is always a great challenge to distinguish high-grade glioma (HGG) from primary central nervous system lymphoma (PCNSL). We conducted a meta-analysis to assess the performance of MR perfusion-weighted imaging (PWI) in differentiating HGG from PCNSL. The heterogeneity and threshold effect were evaluated, and the sensitivity (SEN), specificity (SPE) and areas under summary receiver operating characteristic curve (SROC) were calculated. Fourteen studies with a total of 598 participants were included in this meta-analysis. The results indicated that PWI had a high level of accuracy (area under the curve (AUC) = 0.9415) for differentiating HGG from PCNSL by using the best parameter from each study. The dynamic susceptibility-contrast (DSC) technique might be an optimal index for distinguishing HGGs from PCNSLs (AUC = 0.9812). Furthermore, the DSC had the best sensitivity 0.963 (95%CI: 0.924, 0.986), whereas the arterial spin-labeling (ASL) displayed the best specificity 0.896 (95% CI: 0.781, 0.963) among those techniques. However, the variability of the optimal thresholds from the included studies suggests that further evaluation and standardization are needed before the techniques can be extensively clinically used.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28301491</pmid><doi>10.1371/journal.pone.0173430</doi><tpages>e0173430</tpages><orcidid>https://orcid.org/0000-0003-2141-6438</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-03, Vol.12 (3), p.e0173430-e0173430 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1878126361 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Accuracy Adult Analysis Biology and Life Sciences Blood Brain cancer Brain Neoplasms - diagnostic imaging Care and treatment Central nervous system Central Nervous System Neoplasms - diagnostic imaging Diagnosis Diagnosis, Differential Female Gangrene Glioma Glioma - diagnostic imaging Gliomas Health aspects Humans Lymphoma Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Medical ethics Medicine and Health Sciences Meta-analysis Metastasis Nervous system Neurosurgery NMR Non-Hodgkin's lymphomas Nuclear magnetic resonance Perfusion Perfusion Imaging Physical Sciences Quality Research and Analysis Methods Sensitivity Sensitivity analysis Spectrum analysis Spin labeling Standardization Studies Systematic review Tumors |
title | The performance of MR perfusion-weighted imaging for the differentiation of high-grade glioma from primary central nervous system lymphoma: A systematic review and meta-analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A12%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20performance%20of%20MR%20perfusion-weighted%20imaging%20for%20the%20differentiation%20of%20high-grade%20glioma%20from%20primary%20central%20nervous%20system%20lymphoma:%20A%20systematic%20review%20and%20meta-analysis&rft.jtitle=PloS%20one&rft.au=Xu,%20Weilin&rft.date=2017-03-16&rft.volume=12&rft.issue=3&rft.spage=e0173430&rft.epage=e0173430&rft.pages=e0173430-e0173430&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0173430&rft_dat=%3Cgale_plos_%3EA485757818%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1878126361&rft_id=info:pmid/28301491&rft_galeid=A485757818&rft_doaj_id=oai_doaj_org_article_ec32a30c230841308276a34110100c66&rfr_iscdi=true |