Characterization of bacterial community associated with phytoplankton bloom in a eutrophic lake in South Norway using 16S rRNA gene amplicon sequence analysis
Interactions between different phytoplankton taxa and heterotrophic bacterial communities within aquatic environments can differentially support growth of various heterotrophic bacterial species. In this study, phytoplankton diversity was studied using traditional microscopic techniques and the bact...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-03, Vol.12 (3), p.e0173408-e0173408 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0173408 |
---|---|
container_issue | 3 |
container_start_page | e0173408 |
container_title | PloS one |
container_volume | 12 |
creator | Parulekar, Niranjan Nitin Kolekar, Pandurang Jenkins, Andrew Kleiven, Synne Utkilen, Hans Johansen, Anette Sawant, Sangeeta Kulkarni-Kale, Urmila Kale, Mohan Sæbø, Mona |
description | Interactions between different phytoplankton taxa and heterotrophic bacterial communities within aquatic environments can differentially support growth of various heterotrophic bacterial species. In this study, phytoplankton diversity was studied using traditional microscopic techniques and the bacterial communities associated with phytoplankton bloom were studied using High Throughput Sequencing (HTS) analysis of 16S rRNA gene amplicons from the V1-V3 and V3-V4 hypervariable regions. Samples were collected from Lake Akersvannet, a eutrophic lake in South Norway, during the growth season from June to August 2013. Microscopic examination revealed that the phytoplankton community was mostly represented by Cyanobacteria and the dinoflagellate Ceratium hirundinella. The HTS results revealed that Proteobacteria (Alpha, Beta, and Gamma), Bacteriodetes, Cyanobacteria, Actinobacteria and Verrucomicrobia dominated the bacterial community, with varying relative abundances throughout the sampling season. Species level identification of Cyanobacteria showed a mixed population of Aphanizomenon flos-aquae, Microcystis aeruginosa and Woronichinia naegeliana. A significant proportion of the microbial community was composed of unclassified taxa which might represent locally adapted freshwater bacterial groups. Comparison of cyanobacterial species composition from HTS and microscopy revealed quantitative discrepancies, indicating a need for cross validation of results. To our knowledge, this is the first study that uses HTS methods for studying the bacterial community associated with phytoplankton blooms in a Norwegian lake. The study demonstrates the value of considering results from multiple methods when studying bacterial communities. |
doi_str_mv | 10.1371/journal.pone.0173408 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1876058244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A484923608</galeid><doaj_id>oai_doaj_org_article_eebf8279694a497989b30fbc2951ac81</doaj_id><sourcerecordid>A484923608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-14293540c4fd0ca294d1708f0ee4fe715dc11d90d1fc9302c7a0cbb4ceabc32d3</originalsourceid><addsrcrecordid>eNqNk91u1DAQhSMEoqXwBggsISG42MWOnTi-QVpV_FSqWqkL3FoTx9m4TeJgO5TlYXhWnO622kWVQL6INfnO8XjGkyTPCZ4Tysm7Szu6Htr5YHs9x4RThosHySERNJ3lKaYPd_YHyRPvLzHOaJHnj5ODtIiLYXaY_D5uwIEK2plfEIztka1RuQlAi5TturE3YY3Ae6sMBF2haxMaNDTrYIcW-qsQRWVrbYdMjwDpMTg7NEahFq70FFvaMQrOrLuGNRq96VeI5EvkLs4WaKV7jaAbWqOijdffR92rGIk3W3vjnyaPami9frb9HiVfP374cvx5dnr-6eR4cTpTPM3CjLBU0IxhxeoKK0gFqwjHRY21ZrXmJKsUIZXAFamVoDhVHLAqS6Y0lIqmFT1KXm58h9Z6uS2tl6TgOc5iqVgkTjZEZeFSDs504NbSgpE3AetWElwwqtVS67IuUi5ywYAJLgpRUlyXKhUZAVWQ6PV-e9pYdrpSug8O2j3T_T-9aeTK_pAZZRkXPBq82Ro4Gyvmg-yMV7qN7dB2nPIuCM8pvjnrXyjPmaAx34i--gu9vxBbagXxrqavbUxRTaZywQomUprjIlLze6i4Kt1Nrda1ifE9wds9QWSC_hlWMHovT5YX_8-ef9tnX--wjYY2NN624_TW_T7INqBy1nun67t-ECynibuthpwmTm4nLspe7PbyTnQ7YvQPGE4oxQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1876058244</pqid></control><display><type>article</type><title>Characterization of bacterial community associated with phytoplankton bloom in a eutrophic lake in South Norway using 16S rRNA gene amplicon sequence analysis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Parulekar, Niranjan Nitin ; Kolekar, Pandurang ; Jenkins, Andrew ; Kleiven, Synne ; Utkilen, Hans ; Johansen, Anette ; Sawant, Sangeeta ; Kulkarni-Kale, Urmila ; Kale, Mohan ; Sæbø, Mona</creator><creatorcontrib>Parulekar, Niranjan Nitin ; Kolekar, Pandurang ; Jenkins, Andrew ; Kleiven, Synne ; Utkilen, Hans ; Johansen, Anette ; Sawant, Sangeeta ; Kulkarni-Kale, Urmila ; Kale, Mohan ; Sæbø, Mona</creatorcontrib><description>Interactions between different phytoplankton taxa and heterotrophic bacterial communities within aquatic environments can differentially support growth of various heterotrophic bacterial species. In this study, phytoplankton diversity was studied using traditional microscopic techniques and the bacterial communities associated with phytoplankton bloom were studied using High Throughput Sequencing (HTS) analysis of 16S rRNA gene amplicons from the V1-V3 and V3-V4 hypervariable regions. Samples were collected from Lake Akersvannet, a eutrophic lake in South Norway, during the growth season from June to August 2013. Microscopic examination revealed that the phytoplankton community was mostly represented by Cyanobacteria and the dinoflagellate Ceratium hirundinella. The HTS results revealed that Proteobacteria (Alpha, Beta, and Gamma), Bacteriodetes, Cyanobacteria, Actinobacteria and Verrucomicrobia dominated the bacterial community, with varying relative abundances throughout the sampling season. Species level identification of Cyanobacteria showed a mixed population of Aphanizomenon flos-aquae, Microcystis aeruginosa and Woronichinia naegeliana. A significant proportion of the microbial community was composed of unclassified taxa which might represent locally adapted freshwater bacterial groups. Comparison of cyanobacterial species composition from HTS and microscopy revealed quantitative discrepancies, indicating a need for cross validation of results. To our knowledge, this is the first study that uses HTS methods for studying the bacterial community associated with phytoplankton blooms in a Norwegian lake. The study demonstrates the value of considering results from multiple methods when studying bacterial communities.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0173408</identifier><identifier>PMID: 28282404</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actinobacteria ; Anabaena ; Aphanizomenon ; Aphanizomenon flos-aquae ; Aquatic ecosystems ; Aquatic environment ; Bacteria ; Bacteria - genetics ; Bacteria - isolation & purification ; Bacteria - metabolism ; Bacteriodetes ; Biodiversity ; Bioinformatics ; Biology and Life Sciences ; Ceratium hirundinella ; Climate change ; Communities ; Cyanobacteria ; Cyanobacteria - genetics ; DNA, Bacterial - chemistry ; DNA, Bacterial - isolation & purification ; DNA, Bacterial - metabolism ; Earth Sciences ; Ecology and Environmental Sciences ; Environmental aspects ; Environmental health ; Enzyme-Linked Immunosorbent Assay ; Eutrophic lakes ; Eutrophication ; Gene sequencing ; Genetic aspects ; Genomes ; Heterotrophic bacteria ; High-Throughput Nucleotide Sequencing ; Lakes ; Lakes - microbiology ; Microcystins - analysis ; Microcystis ; Microcystis - genetics ; Microcystis - metabolism ; Microcystis aeruginosa ; Microorganisms ; Microscopy ; Next-generation sequencing ; Norway ; Phytoplankton ; Phytoplankton - genetics ; Phytoplankton - growth & development ; Phytoplankton bloom ; Plankton ; Proteobacteria ; Proteobacteria - genetics ; Research and Analysis Methods ; RNA sequencing ; RNA, Ribosomal, 16S - chemistry ; RNA, Ribosomal, 16S - genetics ; RNA, Ribosomal, 16S - metabolism ; rRNA 16S ; Sequence Analysis, DNA ; Species composition ; Species diversity ; Studies ; Taxa ; Verrucomicrobia ; Water temperature ; Woronichinia naegeliana</subject><ispartof>PloS one, 2017-03, Vol.12 (3), p.e0173408-e0173408</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Parulekar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Parulekar et al 2017 Parulekar et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-14293540c4fd0ca294d1708f0ee4fe715dc11d90d1fc9302c7a0cbb4ceabc32d3</citedby><cites>FETCH-LOGICAL-c725t-14293540c4fd0ca294d1708f0ee4fe715dc11d90d1fc9302c7a0cbb4ceabc32d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5345797/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5345797/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28282404$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parulekar, Niranjan Nitin</creatorcontrib><creatorcontrib>Kolekar, Pandurang</creatorcontrib><creatorcontrib>Jenkins, Andrew</creatorcontrib><creatorcontrib>Kleiven, Synne</creatorcontrib><creatorcontrib>Utkilen, Hans</creatorcontrib><creatorcontrib>Johansen, Anette</creatorcontrib><creatorcontrib>Sawant, Sangeeta</creatorcontrib><creatorcontrib>Kulkarni-Kale, Urmila</creatorcontrib><creatorcontrib>Kale, Mohan</creatorcontrib><creatorcontrib>Sæbø, Mona</creatorcontrib><title>Characterization of bacterial community associated with phytoplankton bloom in a eutrophic lake in South Norway using 16S rRNA gene amplicon sequence analysis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Interactions between different phytoplankton taxa and heterotrophic bacterial communities within aquatic environments can differentially support growth of various heterotrophic bacterial species. In this study, phytoplankton diversity was studied using traditional microscopic techniques and the bacterial communities associated with phytoplankton bloom were studied using High Throughput Sequencing (HTS) analysis of 16S rRNA gene amplicons from the V1-V3 and V3-V4 hypervariable regions. Samples were collected from Lake Akersvannet, a eutrophic lake in South Norway, during the growth season from June to August 2013. Microscopic examination revealed that the phytoplankton community was mostly represented by Cyanobacteria and the dinoflagellate Ceratium hirundinella. The HTS results revealed that Proteobacteria (Alpha, Beta, and Gamma), Bacteriodetes, Cyanobacteria, Actinobacteria and Verrucomicrobia dominated the bacterial community, with varying relative abundances throughout the sampling season. Species level identification of Cyanobacteria showed a mixed population of Aphanizomenon flos-aquae, Microcystis aeruginosa and Woronichinia naegeliana. A significant proportion of the microbial community was composed of unclassified taxa which might represent locally adapted freshwater bacterial groups. Comparison of cyanobacterial species composition from HTS and microscopy revealed quantitative discrepancies, indicating a need for cross validation of results. To our knowledge, this is the first study that uses HTS methods for studying the bacterial community associated with phytoplankton blooms in a Norwegian lake. The study demonstrates the value of considering results from multiple methods when studying bacterial communities.</description><subject>Actinobacteria</subject><subject>Anabaena</subject><subject>Aphanizomenon</subject><subject>Aphanizomenon flos-aquae</subject><subject>Aquatic ecosystems</subject><subject>Aquatic environment</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation & purification</subject><subject>Bacteria - metabolism</subject><subject>Bacteriodetes</subject><subject>Biodiversity</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Ceratium hirundinella</subject><subject>Climate change</subject><subject>Communities</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - genetics</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - isolation & purification</subject><subject>DNA, Bacterial - metabolism</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Environmental aspects</subject><subject>Environmental health</subject><subject>Enzyme-Linked Immunosorbent Assay</subject><subject>Eutrophic lakes</subject><subject>Eutrophication</subject><subject>Gene sequencing</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Heterotrophic bacteria</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Lakes</subject><subject>Lakes - microbiology</subject><subject>Microcystins - analysis</subject><subject>Microcystis</subject><subject>Microcystis - genetics</subject><subject>Microcystis - metabolism</subject><subject>Microcystis aeruginosa</subject><subject>Microorganisms</subject><subject>Microscopy</subject><subject>Next-generation sequencing</subject><subject>Norway</subject><subject>Phytoplankton</subject><subject>Phytoplankton - genetics</subject><subject>Phytoplankton - growth & development</subject><subject>Phytoplankton bloom</subject><subject>Plankton</subject><subject>Proteobacteria</subject><subject>Proteobacteria - genetics</subject><subject>Research and Analysis Methods</subject><subject>RNA sequencing</subject><subject>RNA, Ribosomal, 16S - chemistry</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>RNA, Ribosomal, 16S - metabolism</subject><subject>rRNA 16S</subject><subject>Sequence Analysis, DNA</subject><subject>Species composition</subject><subject>Species diversity</subject><subject>Studies</subject><subject>Taxa</subject><subject>Verrucomicrobia</subject><subject>Water temperature</subject><subject>Woronichinia naegeliana</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk91u1DAQhSMEoqXwBggsISG42MWOnTi-QVpV_FSqWqkL3FoTx9m4TeJgO5TlYXhWnO622kWVQL6INfnO8XjGkyTPCZ4Tysm7Szu6Htr5YHs9x4RThosHySERNJ3lKaYPd_YHyRPvLzHOaJHnj5ODtIiLYXaY_D5uwIEK2plfEIztka1RuQlAi5TturE3YY3Ae6sMBF2haxMaNDTrYIcW-qsQRWVrbYdMjwDpMTg7NEahFq70FFvaMQrOrLuGNRq96VeI5EvkLs4WaKV7jaAbWqOijdffR92rGIk3W3vjnyaPami9frb9HiVfP374cvx5dnr-6eR4cTpTPM3CjLBU0IxhxeoKK0gFqwjHRY21ZrXmJKsUIZXAFamVoDhVHLAqS6Y0lIqmFT1KXm58h9Z6uS2tl6TgOc5iqVgkTjZEZeFSDs504NbSgpE3AetWElwwqtVS67IuUi5ywYAJLgpRUlyXKhUZAVWQ6PV-e9pYdrpSug8O2j3T_T-9aeTK_pAZZRkXPBq82Ro4Gyvmg-yMV7qN7dB2nPIuCM8pvjnrXyjPmaAx34i--gu9vxBbagXxrqavbUxRTaZywQomUprjIlLze6i4Kt1Nrda1ifE9wds9QWSC_hlWMHovT5YX_8-ef9tnX--wjYY2NN624_TW_T7INqBy1nun67t-ECynibuthpwmTm4nLspe7PbyTnQ7YvQPGE4oxQ</recordid><startdate>20170310</startdate><enddate>20170310</enddate><creator>Parulekar, Niranjan Nitin</creator><creator>Kolekar, Pandurang</creator><creator>Jenkins, Andrew</creator><creator>Kleiven, Synne</creator><creator>Utkilen, Hans</creator><creator>Johansen, Anette</creator><creator>Sawant, Sangeeta</creator><creator>Kulkarni-Kale, Urmila</creator><creator>Kale, Mohan</creator><creator>Sæbø, Mona</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170310</creationdate><title>Characterization of bacterial community associated with phytoplankton bloom in a eutrophic lake in South Norway using 16S rRNA gene amplicon sequence analysis</title><author>Parulekar, Niranjan Nitin ; Kolekar, Pandurang ; Jenkins, Andrew ; Kleiven, Synne ; Utkilen, Hans ; Johansen, Anette ; Sawant, Sangeeta ; Kulkarni-Kale, Urmila ; Kale, Mohan ; Sæbø, Mona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-14293540c4fd0ca294d1708f0ee4fe715dc11d90d1fc9302c7a0cbb4ceabc32d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Actinobacteria</topic><topic>Anabaena</topic><topic>Aphanizomenon</topic><topic>Aphanizomenon flos-aquae</topic><topic>Aquatic ecosystems</topic><topic>Aquatic environment</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation & purification</topic><topic>Bacteria - metabolism</topic><topic>Bacteriodetes</topic><topic>Biodiversity</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Ceratium hirundinella</topic><topic>Climate change</topic><topic>Communities</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - genetics</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - isolation & purification</topic><topic>DNA, Bacterial - metabolism</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Environmental aspects</topic><topic>Environmental health</topic><topic>Enzyme-Linked Immunosorbent Assay</topic><topic>Eutrophic lakes</topic><topic>Eutrophication</topic><topic>Gene sequencing</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Heterotrophic bacteria</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Lakes</topic><topic>Lakes - microbiology</topic><topic>Microcystins - analysis</topic><topic>Microcystis</topic><topic>Microcystis - genetics</topic><topic>Microcystis - metabolism</topic><topic>Microcystis aeruginosa</topic><topic>Microorganisms</topic><topic>Microscopy</topic><topic>Next-generation sequencing</topic><topic>Norway</topic><topic>Phytoplankton</topic><topic>Phytoplankton - genetics</topic><topic>Phytoplankton - growth & development</topic><topic>Phytoplankton bloom</topic><topic>Plankton</topic><topic>Proteobacteria</topic><topic>Proteobacteria - genetics</topic><topic>Research and Analysis Methods</topic><topic>RNA sequencing</topic><topic>RNA, Ribosomal, 16S - chemistry</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>RNA, Ribosomal, 16S - metabolism</topic><topic>rRNA 16S</topic><topic>Sequence Analysis, DNA</topic><topic>Species composition</topic><topic>Species diversity</topic><topic>Studies</topic><topic>Taxa</topic><topic>Verrucomicrobia</topic><topic>Water temperature</topic><topic>Woronichinia naegeliana</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parulekar, Niranjan Nitin</creatorcontrib><creatorcontrib>Kolekar, Pandurang</creatorcontrib><creatorcontrib>Jenkins, Andrew</creatorcontrib><creatorcontrib>Kleiven, Synne</creatorcontrib><creatorcontrib>Utkilen, Hans</creatorcontrib><creatorcontrib>Johansen, Anette</creatorcontrib><creatorcontrib>Sawant, Sangeeta</creatorcontrib><creatorcontrib>Kulkarni-Kale, Urmila</creatorcontrib><creatorcontrib>Kale, Mohan</creatorcontrib><creatorcontrib>Sæbø, Mona</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parulekar, Niranjan Nitin</au><au>Kolekar, Pandurang</au><au>Jenkins, Andrew</au><au>Kleiven, Synne</au><au>Utkilen, Hans</au><au>Johansen, Anette</au><au>Sawant, Sangeeta</au><au>Kulkarni-Kale, Urmila</au><au>Kale, Mohan</au><au>Sæbø, Mona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of bacterial community associated with phytoplankton bloom in a eutrophic lake in South Norway using 16S rRNA gene amplicon sequence analysis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-03-10</date><risdate>2017</risdate><volume>12</volume><issue>3</issue><spage>e0173408</spage><epage>e0173408</epage><pages>e0173408-e0173408</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Interactions between different phytoplankton taxa and heterotrophic bacterial communities within aquatic environments can differentially support growth of various heterotrophic bacterial species. In this study, phytoplankton diversity was studied using traditional microscopic techniques and the bacterial communities associated with phytoplankton bloom were studied using High Throughput Sequencing (HTS) analysis of 16S rRNA gene amplicons from the V1-V3 and V3-V4 hypervariable regions. Samples were collected from Lake Akersvannet, a eutrophic lake in South Norway, during the growth season from June to August 2013. Microscopic examination revealed that the phytoplankton community was mostly represented by Cyanobacteria and the dinoflagellate Ceratium hirundinella. The HTS results revealed that Proteobacteria (Alpha, Beta, and Gamma), Bacteriodetes, Cyanobacteria, Actinobacteria and Verrucomicrobia dominated the bacterial community, with varying relative abundances throughout the sampling season. Species level identification of Cyanobacteria showed a mixed population of Aphanizomenon flos-aquae, Microcystis aeruginosa and Woronichinia naegeliana. A significant proportion of the microbial community was composed of unclassified taxa which might represent locally adapted freshwater bacterial groups. Comparison of cyanobacterial species composition from HTS and microscopy revealed quantitative discrepancies, indicating a need for cross validation of results. To our knowledge, this is the first study that uses HTS methods for studying the bacterial community associated with phytoplankton blooms in a Norwegian lake. The study demonstrates the value of considering results from multiple methods when studying bacterial communities.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28282404</pmid><doi>10.1371/journal.pone.0173408</doi><tpages>e0173408</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-03, Vol.12 (3), p.e0173408-e0173408 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1876058244 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Actinobacteria Anabaena Aphanizomenon Aphanizomenon flos-aquae Aquatic ecosystems Aquatic environment Bacteria Bacteria - genetics Bacteria - isolation & purification Bacteria - metabolism Bacteriodetes Biodiversity Bioinformatics Biology and Life Sciences Ceratium hirundinella Climate change Communities Cyanobacteria Cyanobacteria - genetics DNA, Bacterial - chemistry DNA, Bacterial - isolation & purification DNA, Bacterial - metabolism Earth Sciences Ecology and Environmental Sciences Environmental aspects Environmental health Enzyme-Linked Immunosorbent Assay Eutrophic lakes Eutrophication Gene sequencing Genetic aspects Genomes Heterotrophic bacteria High-Throughput Nucleotide Sequencing Lakes Lakes - microbiology Microcystins - analysis Microcystis Microcystis - genetics Microcystis - metabolism Microcystis aeruginosa Microorganisms Microscopy Next-generation sequencing Norway Phytoplankton Phytoplankton - genetics Phytoplankton - growth & development Phytoplankton bloom Plankton Proteobacteria Proteobacteria - genetics Research and Analysis Methods RNA sequencing RNA, Ribosomal, 16S - chemistry RNA, Ribosomal, 16S - genetics RNA, Ribosomal, 16S - metabolism rRNA 16S Sequence Analysis, DNA Species composition Species diversity Studies Taxa Verrucomicrobia Water temperature Woronichinia naegeliana |
title | Characterization of bacterial community associated with phytoplankton bloom in a eutrophic lake in South Norway using 16S rRNA gene amplicon sequence analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20bacterial%20community%20associated%20with%20phytoplankton%20bloom%20in%20a%20eutrophic%20lake%20in%20South%20Norway%20using%2016S%20rRNA%20gene%20amplicon%20sequence%20analysis&rft.jtitle=PloS%20one&rft.au=Parulekar,%20Niranjan%20Nitin&rft.date=2017-03-10&rft.volume=12&rft.issue=3&rft.spage=e0173408&rft.epage=e0173408&rft.pages=e0173408-e0173408&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0173408&rft_dat=%3Cgale_plos_%3EA484923608%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1876058244&rft_id=info:pmid/28282404&rft_galeid=A484923608&rft_doaj_id=oai_doaj_org_article_eebf8279694a497989b30fbc2951ac81&rfr_iscdi=true |