PA28 modulates antigen processing and viral replication during coxsackievirus B3 infection
The function of the proteasome is modulated at the level of subunit expression and by association with its regulatory complexes. During coxsackievirus B3 (CVB3) myocarditis, IFN-induced formation of immunoproteasomes (ip) is known to be critical for regulating immune modulating molecules. The functi...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-03, Vol.12 (3), p.e0173259-e0173259 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0173259 |
---|---|
container_issue | 3 |
container_start_page | e0173259 |
container_title | PloS one |
container_volume | 12 |
creator | Respondek, Dorota Voss, Martin Kühlewindt, Ina Klingel, Karin Krüger, Elke Beling, Antje |
description | The function of the proteasome is modulated at the level of subunit expression and by association with its regulatory complexes. During coxsackievirus B3 (CVB3) myocarditis, IFN-induced formation of immunoproteasomes (ip) is known to be critical for regulating immune modulating molecules. The function of the IFN-γ-inducible proteasome regulator subunits PA28 α and β, however, in this context was unknown. During viral myocarditis, we found an increased abundance of PA28β subunits in heart tissue. PA28α/β exists in PA28-20S-PA28 and PA700-20S-PA28 hybrid proteasome complexes in cells both with either predominant ip and standard proteasome (sp) expression. Being in line with reduced proteasome activity in PA28α/β-deficient cells, we observed increased levels of oxidized and poly-ubiquitinated proteins upon TLR3-activation in these cells. Moreover, PA28α/β is capable to interfere directly with viral replication of CVB3 and facilitates the generation of CVB3-derived MHC class I epitopes by the proteasome. In contrast to a distinct function of PA28α/β in vitro, gene ablation of PA28α/β in mice being on a genetic background with resistance towards the development of severe infection had no significant impact on disease progression. Other than reported for the ip, in this host PA28α/β is dispensable to meet the demand of increased peptide hydrolysis capacity by the proteasome during viral myocarditis. |
doi_str_mv | 10.1371/journal.pone.0173259 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1875841164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A484740208</galeid><doaj_id>oai_doaj_org_article_dd4b5fceddb149f682bb04c1cccb1de0</doaj_id><sourcerecordid>A484740208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-d1e4c0c32d90045f0ef6277ed0c5adda3502ba73ce1461e43c0750d3a0c51e213</originalsourceid><addsrcrecordid>eNqNk0tv1DAQxyMEog_4BggiIVVw2MWvxNkL0lLxWKlSEa8DF8sZT7JesvFiJ1X59jhsWm1QD5UPtmZ-8_d4xpMkzyiZUy7pm43rfaub-c61OCdUcpYtHiTHdMHZLGeEPzw4HyUnIWwIyXiR54-TI1YwWTAij5Ofn5esSLfO9I3uMKS67WyNbbrzDjAE29bRZNIr63WTetw1FnRnXZua3g9OcNdBwy-LkehD-o6ntq0QBuRJ8qjSTcCn436afP_w_tv5p9nF5cfV-fJiBpJl3cxQFECAM7MgRGQVwSpnUqIhkGljNM8IK7XkgFTkkeVAZEYM19FPkVF-mrzY6-4aF9RYlqBoIbNCUJqLSKz2hHF6o3bebrX_o5y26p_B-Vpp31loUBkjyqwCNKakYlHlBStLIoACQEkNkqj1drytL7doANsulmYiOvW0dq1qd6UyLgSXMgq8GgW8-91j6NTWBsCm0S26fsi7oDHzSN4DlblYxCYPab38D727ECNV6_jW2CkXU4RBVC1FIaQgjBSRmt9BxWVwayF-t8pG-yTg9SQgMh1ed7XuQ1Crr1_uz17-mLJnB-waddOtg2v64XeFKSj2IHgXgsfqth-UqGFabqqhhmlR47TEsOeHvbwNuhkP_heF_g_d</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875841164</pqid></control><display><type>article</type><title>PA28 modulates antigen processing and viral replication during coxsackievirus B3 infection</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Respondek, Dorota ; Voss, Martin ; Kühlewindt, Ina ; Klingel, Karin ; Krüger, Elke ; Beling, Antje</creator><creatorcontrib>Respondek, Dorota ; Voss, Martin ; Kühlewindt, Ina ; Klingel, Karin ; Krüger, Elke ; Beling, Antje</creatorcontrib><description>The function of the proteasome is modulated at the level of subunit expression and by association with its regulatory complexes. During coxsackievirus B3 (CVB3) myocarditis, IFN-induced formation of immunoproteasomes (ip) is known to be critical for regulating immune modulating molecules. The function of the IFN-γ-inducible proteasome regulator subunits PA28 α and β, however, in this context was unknown. During viral myocarditis, we found an increased abundance of PA28β subunits in heart tissue. PA28α/β exists in PA28-20S-PA28 and PA700-20S-PA28 hybrid proteasome complexes in cells both with either predominant ip and standard proteasome (sp) expression. Being in line with reduced proteasome activity in PA28α/β-deficient cells, we observed increased levels of oxidized and poly-ubiquitinated proteins upon TLR3-activation in these cells. Moreover, PA28α/β is capable to interfere directly with viral replication of CVB3 and facilitates the generation of CVB3-derived MHC class I epitopes by the proteasome. In contrast to a distinct function of PA28α/β in vitro, gene ablation of PA28α/β in mice being on a genetic background with resistance towards the development of severe infection had no significant impact on disease progression. Other than reported for the ip, in this host PA28α/β is dispensable to meet the demand of increased peptide hydrolysis capacity by the proteasome during viral myocarditis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0173259</identifier><identifier>PMID: 28278207</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antigen Presentation ; Antigen processing ; Antigens ; Autoantigens - immunology ; Biology and Life Sciences ; Cardiomyocytes ; Coxsackievirus infections ; Coxsackievirus Infections - immunology ; Coxsackievirus Infections - metabolism ; Coxsackievirus Infections - virology ; Coxsackieviruses ; Cytokines ; Enterovirus ; Enterovirus B, Human - immunology ; Epitopes ; Female ; Genetic aspects ; Health aspects ; Heart ; Heart diseases ; Homeostasis ; Infections ; Interferon ; Laboratory animals ; Major histocompatibility complex ; Medicine and Health Sciences ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Myocarditis ; Myocarditis - immunology ; Myocarditis - metabolism ; Myocarditis - virology ; Oxidative stress ; Peptides ; Physiology ; Picornaviridae ; Proteasome Endopeptidase Complex - immunology ; Proteasome Endopeptidase Complex - metabolism ; Proteasome Endopeptidase Complex - physiology ; Proteasomes ; Proteins ; Replication ; Research and analysis methods ; Stem cells ; Studies ; TLR3 protein ; Toll-like receptors ; Ubiquitin-proteasome system ; Virus Replication ; γ-Interferon</subject><ispartof>PloS one, 2017-03, Vol.12 (3), p.e0173259-e0173259</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Respondek et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Respondek et al 2017 Respondek et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-d1e4c0c32d90045f0ef6277ed0c5adda3502ba73ce1461e43c0750d3a0c51e213</citedby><cites>FETCH-LOGICAL-c725t-d1e4c0c32d90045f0ef6277ed0c5adda3502ba73ce1461e43c0750d3a0c51e213</cites><orcidid>0000-0002-1826-5248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5344377/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5344377/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28278207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Respondek, Dorota</creatorcontrib><creatorcontrib>Voss, Martin</creatorcontrib><creatorcontrib>Kühlewindt, Ina</creatorcontrib><creatorcontrib>Klingel, Karin</creatorcontrib><creatorcontrib>Krüger, Elke</creatorcontrib><creatorcontrib>Beling, Antje</creatorcontrib><title>PA28 modulates antigen processing and viral replication during coxsackievirus B3 infection</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The function of the proteasome is modulated at the level of subunit expression and by association with its regulatory complexes. During coxsackievirus B3 (CVB3) myocarditis, IFN-induced formation of immunoproteasomes (ip) is known to be critical for regulating immune modulating molecules. The function of the IFN-γ-inducible proteasome regulator subunits PA28 α and β, however, in this context was unknown. During viral myocarditis, we found an increased abundance of PA28β subunits in heart tissue. PA28α/β exists in PA28-20S-PA28 and PA700-20S-PA28 hybrid proteasome complexes in cells both with either predominant ip and standard proteasome (sp) expression. Being in line with reduced proteasome activity in PA28α/β-deficient cells, we observed increased levels of oxidized and poly-ubiquitinated proteins upon TLR3-activation in these cells. Moreover, PA28α/β is capable to interfere directly with viral replication of CVB3 and facilitates the generation of CVB3-derived MHC class I epitopes by the proteasome. In contrast to a distinct function of PA28α/β in vitro, gene ablation of PA28α/β in mice being on a genetic background with resistance towards the development of severe infection had no significant impact on disease progression. Other than reported for the ip, in this host PA28α/β is dispensable to meet the demand of increased peptide hydrolysis capacity by the proteasome during viral myocarditis.</description><subject>Animals</subject><subject>Antigen Presentation</subject><subject>Antigen processing</subject><subject>Antigens</subject><subject>Autoantigens - immunology</subject><subject>Biology and Life Sciences</subject><subject>Cardiomyocytes</subject><subject>Coxsackievirus infections</subject><subject>Coxsackievirus Infections - immunology</subject><subject>Coxsackievirus Infections - metabolism</subject><subject>Coxsackievirus Infections - virology</subject><subject>Coxsackieviruses</subject><subject>Cytokines</subject><subject>Enterovirus</subject><subject>Enterovirus B, Human - immunology</subject><subject>Epitopes</subject><subject>Female</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Homeostasis</subject><subject>Infections</subject><subject>Interferon</subject><subject>Laboratory animals</subject><subject>Major histocompatibility complex</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Myocarditis</subject><subject>Myocarditis - immunology</subject><subject>Myocarditis - metabolism</subject><subject>Myocarditis - virology</subject><subject>Oxidative stress</subject><subject>Peptides</subject><subject>Physiology</subject><subject>Picornaviridae</subject><subject>Proteasome Endopeptidase Complex - immunology</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Proteasome Endopeptidase Complex - physiology</subject><subject>Proteasomes</subject><subject>Proteins</subject><subject>Replication</subject><subject>Research and analysis methods</subject><subject>Stem cells</subject><subject>Studies</subject><subject>TLR3 protein</subject><subject>Toll-like receptors</subject><subject>Ubiquitin-proteasome system</subject><subject>Virus Replication</subject><subject>γ-Interferon</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tv1DAQxyMEog_4BggiIVVw2MWvxNkL0lLxWKlSEa8DF8sZT7JesvFiJ1X59jhsWm1QD5UPtmZ-8_d4xpMkzyiZUy7pm43rfaub-c61OCdUcpYtHiTHdMHZLGeEPzw4HyUnIWwIyXiR54-TI1YwWTAij5Ofn5esSLfO9I3uMKS67WyNbbrzDjAE29bRZNIr63WTetw1FnRnXZua3g9OcNdBwy-LkehD-o6ntq0QBuRJ8qjSTcCn436afP_w_tv5p9nF5cfV-fJiBpJl3cxQFECAM7MgRGQVwSpnUqIhkGljNM8IK7XkgFTkkeVAZEYM19FPkVF-mrzY6-4aF9RYlqBoIbNCUJqLSKz2hHF6o3bebrX_o5y26p_B-Vpp31loUBkjyqwCNKakYlHlBStLIoACQEkNkqj1drytL7doANsulmYiOvW0dq1qd6UyLgSXMgq8GgW8-91j6NTWBsCm0S26fsi7oDHzSN4DlblYxCYPab38D727ECNV6_jW2CkXU4RBVC1FIaQgjBSRmt9BxWVwayF-t8pG-yTg9SQgMh1ed7XuQ1Crr1_uz17-mLJnB-waddOtg2v64XeFKSj2IHgXgsfqth-UqGFabqqhhmlR47TEsOeHvbwNuhkP_heF_g_d</recordid><startdate>20170309</startdate><enddate>20170309</enddate><creator>Respondek, Dorota</creator><creator>Voss, Martin</creator><creator>Kühlewindt, Ina</creator><creator>Klingel, Karin</creator><creator>Krüger, Elke</creator><creator>Beling, Antje</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1826-5248</orcidid></search><sort><creationdate>20170309</creationdate><title>PA28 modulates antigen processing and viral replication during coxsackievirus B3 infection</title><author>Respondek, Dorota ; Voss, Martin ; Kühlewindt, Ina ; Klingel, Karin ; Krüger, Elke ; Beling, Antje</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-d1e4c0c32d90045f0ef6277ed0c5adda3502ba73ce1461e43c0750d3a0c51e213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Antigen Presentation</topic><topic>Antigen processing</topic><topic>Antigens</topic><topic>Autoantigens - immunology</topic><topic>Biology and Life Sciences</topic><topic>Cardiomyocytes</topic><topic>Coxsackievirus infections</topic><topic>Coxsackievirus Infections - immunology</topic><topic>Coxsackievirus Infections - metabolism</topic><topic>Coxsackievirus Infections - virology</topic><topic>Coxsackieviruses</topic><topic>Cytokines</topic><topic>Enterovirus</topic><topic>Enterovirus B, Human - immunology</topic><topic>Epitopes</topic><topic>Female</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Homeostasis</topic><topic>Infections</topic><topic>Interferon</topic><topic>Laboratory animals</topic><topic>Major histocompatibility complex</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Myocarditis</topic><topic>Myocarditis - immunology</topic><topic>Myocarditis - metabolism</topic><topic>Myocarditis - virology</topic><topic>Oxidative stress</topic><topic>Peptides</topic><topic>Physiology</topic><topic>Picornaviridae</topic><topic>Proteasome Endopeptidase Complex - immunology</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Proteasome Endopeptidase Complex - physiology</topic><topic>Proteasomes</topic><topic>Proteins</topic><topic>Replication</topic><topic>Research and analysis methods</topic><topic>Stem cells</topic><topic>Studies</topic><topic>TLR3 protein</topic><topic>Toll-like receptors</topic><topic>Ubiquitin-proteasome system</topic><topic>Virus Replication</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Respondek, Dorota</creatorcontrib><creatorcontrib>Voss, Martin</creatorcontrib><creatorcontrib>Kühlewindt, Ina</creatorcontrib><creatorcontrib>Klingel, Karin</creatorcontrib><creatorcontrib>Krüger, Elke</creatorcontrib><creatorcontrib>Beling, Antje</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Respondek, Dorota</au><au>Voss, Martin</au><au>Kühlewindt, Ina</au><au>Klingel, Karin</au><au>Krüger, Elke</au><au>Beling, Antje</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PA28 modulates antigen processing and viral replication during coxsackievirus B3 infection</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-03-09</date><risdate>2017</risdate><volume>12</volume><issue>3</issue><spage>e0173259</spage><epage>e0173259</epage><pages>e0173259-e0173259</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The function of the proteasome is modulated at the level of subunit expression and by association with its regulatory complexes. During coxsackievirus B3 (CVB3) myocarditis, IFN-induced formation of immunoproteasomes (ip) is known to be critical for regulating immune modulating molecules. The function of the IFN-γ-inducible proteasome regulator subunits PA28 α and β, however, in this context was unknown. During viral myocarditis, we found an increased abundance of PA28β subunits in heart tissue. PA28α/β exists in PA28-20S-PA28 and PA700-20S-PA28 hybrid proteasome complexes in cells both with either predominant ip and standard proteasome (sp) expression. Being in line with reduced proteasome activity in PA28α/β-deficient cells, we observed increased levels of oxidized and poly-ubiquitinated proteins upon TLR3-activation in these cells. Moreover, PA28α/β is capable to interfere directly with viral replication of CVB3 and facilitates the generation of CVB3-derived MHC class I epitopes by the proteasome. In contrast to a distinct function of PA28α/β in vitro, gene ablation of PA28α/β in mice being on a genetic background with resistance towards the development of severe infection had no significant impact on disease progression. Other than reported for the ip, in this host PA28α/β is dispensable to meet the demand of increased peptide hydrolysis capacity by the proteasome during viral myocarditis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28278207</pmid><doi>10.1371/journal.pone.0173259</doi><tpages>e0173259</tpages><orcidid>https://orcid.org/0000-0002-1826-5248</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-03, Vol.12 (3), p.e0173259-e0173259 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1875841164 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Animals Antigen Presentation Antigen processing Antigens Autoantigens - immunology Biology and Life Sciences Cardiomyocytes Coxsackievirus infections Coxsackievirus Infections - immunology Coxsackievirus Infections - metabolism Coxsackievirus Infections - virology Coxsackieviruses Cytokines Enterovirus Enterovirus B, Human - immunology Epitopes Female Genetic aspects Health aspects Heart Heart diseases Homeostasis Infections Interferon Laboratory animals Major histocompatibility complex Medicine and Health Sciences Mice Mice, Inbred C57BL Mice, Knockout Myocarditis Myocarditis - immunology Myocarditis - metabolism Myocarditis - virology Oxidative stress Peptides Physiology Picornaviridae Proteasome Endopeptidase Complex - immunology Proteasome Endopeptidase Complex - metabolism Proteasome Endopeptidase Complex - physiology Proteasomes Proteins Replication Research and analysis methods Stem cells Studies TLR3 protein Toll-like receptors Ubiquitin-proteasome system Virus Replication γ-Interferon |
title | PA28 modulates antigen processing and viral replication during coxsackievirus B3 infection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A23%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PA28%20modulates%20antigen%20processing%20and%20viral%20replication%20during%20coxsackievirus%20B3%20infection&rft.jtitle=PloS%20one&rft.au=Respondek,%20Dorota&rft.date=2017-03-09&rft.volume=12&rft.issue=3&rft.spage=e0173259&rft.epage=e0173259&rft.pages=e0173259-e0173259&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0173259&rft_dat=%3Cgale_plos_%3EA484740208%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875841164&rft_id=info:pmid/28278207&rft_galeid=A484740208&rft_doaj_id=oai_doaj_org_article_dd4b5fceddb149f682bb04c1cccb1de0&rfr_iscdi=true |