PA28 modulates antigen processing and viral replication during coxsackievirus B3 infection

The function of the proteasome is modulated at the level of subunit expression and by association with its regulatory complexes. During coxsackievirus B3 (CVB3) myocarditis, IFN-induced formation of immunoproteasomes (ip) is known to be critical for regulating immune modulating molecules. The functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-03, Vol.12 (3), p.e0173259-e0173259
Hauptverfasser: Respondek, Dorota, Voss, Martin, Kühlewindt, Ina, Klingel, Karin, Krüger, Elke, Beling, Antje
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0173259
container_issue 3
container_start_page e0173259
container_title PloS one
container_volume 12
creator Respondek, Dorota
Voss, Martin
Kühlewindt, Ina
Klingel, Karin
Krüger, Elke
Beling, Antje
description The function of the proteasome is modulated at the level of subunit expression and by association with its regulatory complexes. During coxsackievirus B3 (CVB3) myocarditis, IFN-induced formation of immunoproteasomes (ip) is known to be critical for regulating immune modulating molecules. The function of the IFN-γ-inducible proteasome regulator subunits PA28 α and β, however, in this context was unknown. During viral myocarditis, we found an increased abundance of PA28β subunits in heart tissue. PA28α/β exists in PA28-20S-PA28 and PA700-20S-PA28 hybrid proteasome complexes in cells both with either predominant ip and standard proteasome (sp) expression. Being in line with reduced proteasome activity in PA28α/β-deficient cells, we observed increased levels of oxidized and poly-ubiquitinated proteins upon TLR3-activation in these cells. Moreover, PA28α/β is capable to interfere directly with viral replication of CVB3 and facilitates the generation of CVB3-derived MHC class I epitopes by the proteasome. In contrast to a distinct function of PA28α/β in vitro, gene ablation of PA28α/β in mice being on a genetic background with resistance towards the development of severe infection had no significant impact on disease progression. Other than reported for the ip, in this host PA28α/β is dispensable to meet the demand of increased peptide hydrolysis capacity by the proteasome during viral myocarditis.
doi_str_mv 10.1371/journal.pone.0173259
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1875841164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A484740208</galeid><doaj_id>oai_doaj_org_article_dd4b5fceddb149f682bb04c1cccb1de0</doaj_id><sourcerecordid>A484740208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-d1e4c0c32d90045f0ef6277ed0c5adda3502ba73ce1461e43c0750d3a0c51e213</originalsourceid><addsrcrecordid>eNqNk0tv1DAQxyMEog_4BggiIVVw2MWvxNkL0lLxWKlSEa8DF8sZT7JesvFiJ1X59jhsWm1QD5UPtmZ-8_d4xpMkzyiZUy7pm43rfaub-c61OCdUcpYtHiTHdMHZLGeEPzw4HyUnIWwIyXiR54-TI1YwWTAij5Ofn5esSLfO9I3uMKS67WyNbbrzDjAE29bRZNIr63WTetw1FnRnXZua3g9OcNdBwy-LkehD-o6ntq0QBuRJ8qjSTcCn436afP_w_tv5p9nF5cfV-fJiBpJl3cxQFECAM7MgRGQVwSpnUqIhkGljNM8IK7XkgFTkkeVAZEYM19FPkVF-mrzY6-4aF9RYlqBoIbNCUJqLSKz2hHF6o3bebrX_o5y26p_B-Vpp31loUBkjyqwCNKakYlHlBStLIoACQEkNkqj1drytL7doANsulmYiOvW0dq1qd6UyLgSXMgq8GgW8-91j6NTWBsCm0S26fsi7oDHzSN4DlblYxCYPab38D727ECNV6_jW2CkXU4RBVC1FIaQgjBSRmt9BxWVwayF-t8pG-yTg9SQgMh1ed7XuQ1Crr1_uz17-mLJnB-waddOtg2v64XeFKSj2IHgXgsfqth-UqGFabqqhhmlR47TEsOeHvbwNuhkP_heF_g_d</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875841164</pqid></control><display><type>article</type><title>PA28 modulates antigen processing and viral replication during coxsackievirus B3 infection</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Respondek, Dorota ; Voss, Martin ; Kühlewindt, Ina ; Klingel, Karin ; Krüger, Elke ; Beling, Antje</creator><creatorcontrib>Respondek, Dorota ; Voss, Martin ; Kühlewindt, Ina ; Klingel, Karin ; Krüger, Elke ; Beling, Antje</creatorcontrib><description>The function of the proteasome is modulated at the level of subunit expression and by association with its regulatory complexes. During coxsackievirus B3 (CVB3) myocarditis, IFN-induced formation of immunoproteasomes (ip) is known to be critical for regulating immune modulating molecules. The function of the IFN-γ-inducible proteasome regulator subunits PA28 α and β, however, in this context was unknown. During viral myocarditis, we found an increased abundance of PA28β subunits in heart tissue. PA28α/β exists in PA28-20S-PA28 and PA700-20S-PA28 hybrid proteasome complexes in cells both with either predominant ip and standard proteasome (sp) expression. Being in line with reduced proteasome activity in PA28α/β-deficient cells, we observed increased levels of oxidized and poly-ubiquitinated proteins upon TLR3-activation in these cells. Moreover, PA28α/β is capable to interfere directly with viral replication of CVB3 and facilitates the generation of CVB3-derived MHC class I epitopes by the proteasome. In contrast to a distinct function of PA28α/β in vitro, gene ablation of PA28α/β in mice being on a genetic background with resistance towards the development of severe infection had no significant impact on disease progression. Other than reported for the ip, in this host PA28α/β is dispensable to meet the demand of increased peptide hydrolysis capacity by the proteasome during viral myocarditis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0173259</identifier><identifier>PMID: 28278207</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antigen Presentation ; Antigen processing ; Antigens ; Autoantigens - immunology ; Biology and Life Sciences ; Cardiomyocytes ; Coxsackievirus infections ; Coxsackievirus Infections - immunology ; Coxsackievirus Infections - metabolism ; Coxsackievirus Infections - virology ; Coxsackieviruses ; Cytokines ; Enterovirus ; Enterovirus B, Human - immunology ; Epitopes ; Female ; Genetic aspects ; Health aspects ; Heart ; Heart diseases ; Homeostasis ; Infections ; Interferon ; Laboratory animals ; Major histocompatibility complex ; Medicine and Health Sciences ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Myocarditis ; Myocarditis - immunology ; Myocarditis - metabolism ; Myocarditis - virology ; Oxidative stress ; Peptides ; Physiology ; Picornaviridae ; Proteasome Endopeptidase Complex - immunology ; Proteasome Endopeptidase Complex - metabolism ; Proteasome Endopeptidase Complex - physiology ; Proteasomes ; Proteins ; Replication ; Research and analysis methods ; Stem cells ; Studies ; TLR3 protein ; Toll-like receptors ; Ubiquitin-proteasome system ; Virus Replication ; γ-Interferon</subject><ispartof>PloS one, 2017-03, Vol.12 (3), p.e0173259-e0173259</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Respondek et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Respondek et al 2017 Respondek et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-d1e4c0c32d90045f0ef6277ed0c5adda3502ba73ce1461e43c0750d3a0c51e213</citedby><cites>FETCH-LOGICAL-c725t-d1e4c0c32d90045f0ef6277ed0c5adda3502ba73ce1461e43c0750d3a0c51e213</cites><orcidid>0000-0002-1826-5248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5344377/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5344377/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28278207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Respondek, Dorota</creatorcontrib><creatorcontrib>Voss, Martin</creatorcontrib><creatorcontrib>Kühlewindt, Ina</creatorcontrib><creatorcontrib>Klingel, Karin</creatorcontrib><creatorcontrib>Krüger, Elke</creatorcontrib><creatorcontrib>Beling, Antje</creatorcontrib><title>PA28 modulates antigen processing and viral replication during coxsackievirus B3 infection</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The function of the proteasome is modulated at the level of subunit expression and by association with its regulatory complexes. During coxsackievirus B3 (CVB3) myocarditis, IFN-induced formation of immunoproteasomes (ip) is known to be critical for regulating immune modulating molecules. The function of the IFN-γ-inducible proteasome regulator subunits PA28 α and β, however, in this context was unknown. During viral myocarditis, we found an increased abundance of PA28β subunits in heart tissue. PA28α/β exists in PA28-20S-PA28 and PA700-20S-PA28 hybrid proteasome complexes in cells both with either predominant ip and standard proteasome (sp) expression. Being in line with reduced proteasome activity in PA28α/β-deficient cells, we observed increased levels of oxidized and poly-ubiquitinated proteins upon TLR3-activation in these cells. Moreover, PA28α/β is capable to interfere directly with viral replication of CVB3 and facilitates the generation of CVB3-derived MHC class I epitopes by the proteasome. In contrast to a distinct function of PA28α/β in vitro, gene ablation of PA28α/β in mice being on a genetic background with resistance towards the development of severe infection had no significant impact on disease progression. Other than reported for the ip, in this host PA28α/β is dispensable to meet the demand of increased peptide hydrolysis capacity by the proteasome during viral myocarditis.</description><subject>Animals</subject><subject>Antigen Presentation</subject><subject>Antigen processing</subject><subject>Antigens</subject><subject>Autoantigens - immunology</subject><subject>Biology and Life Sciences</subject><subject>Cardiomyocytes</subject><subject>Coxsackievirus infections</subject><subject>Coxsackievirus Infections - immunology</subject><subject>Coxsackievirus Infections - metabolism</subject><subject>Coxsackievirus Infections - virology</subject><subject>Coxsackieviruses</subject><subject>Cytokines</subject><subject>Enterovirus</subject><subject>Enterovirus B, Human - immunology</subject><subject>Epitopes</subject><subject>Female</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Homeostasis</subject><subject>Infections</subject><subject>Interferon</subject><subject>Laboratory animals</subject><subject>Major histocompatibility complex</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Myocarditis</subject><subject>Myocarditis - immunology</subject><subject>Myocarditis - metabolism</subject><subject>Myocarditis - virology</subject><subject>Oxidative stress</subject><subject>Peptides</subject><subject>Physiology</subject><subject>Picornaviridae</subject><subject>Proteasome Endopeptidase Complex - immunology</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Proteasome Endopeptidase Complex - physiology</subject><subject>Proteasomes</subject><subject>Proteins</subject><subject>Replication</subject><subject>Research and analysis methods</subject><subject>Stem cells</subject><subject>Studies</subject><subject>TLR3 protein</subject><subject>Toll-like receptors</subject><subject>Ubiquitin-proteasome system</subject><subject>Virus Replication</subject><subject>γ-Interferon</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tv1DAQxyMEog_4BggiIVVw2MWvxNkL0lLxWKlSEa8DF8sZT7JesvFiJ1X59jhsWm1QD5UPtmZ-8_d4xpMkzyiZUy7pm43rfaub-c61OCdUcpYtHiTHdMHZLGeEPzw4HyUnIWwIyXiR54-TI1YwWTAij5Ofn5esSLfO9I3uMKS67WyNbbrzDjAE29bRZNIr63WTetw1FnRnXZua3g9OcNdBwy-LkehD-o6ntq0QBuRJ8qjSTcCn436afP_w_tv5p9nF5cfV-fJiBpJl3cxQFECAM7MgRGQVwSpnUqIhkGljNM8IK7XkgFTkkeVAZEYM19FPkVF-mrzY6-4aF9RYlqBoIbNCUJqLSKz2hHF6o3bebrX_o5y26p_B-Vpp31loUBkjyqwCNKakYlHlBStLIoACQEkNkqj1drytL7doANsulmYiOvW0dq1qd6UyLgSXMgq8GgW8-91j6NTWBsCm0S26fsi7oDHzSN4DlblYxCYPab38D727ECNV6_jW2CkXU4RBVC1FIaQgjBSRmt9BxWVwayF-t8pG-yTg9SQgMh1ed7XuQ1Crr1_uz17-mLJnB-waddOtg2v64XeFKSj2IHgXgsfqth-UqGFabqqhhmlR47TEsOeHvbwNuhkP_heF_g_d</recordid><startdate>20170309</startdate><enddate>20170309</enddate><creator>Respondek, Dorota</creator><creator>Voss, Martin</creator><creator>Kühlewindt, Ina</creator><creator>Klingel, Karin</creator><creator>Krüger, Elke</creator><creator>Beling, Antje</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1826-5248</orcidid></search><sort><creationdate>20170309</creationdate><title>PA28 modulates antigen processing and viral replication during coxsackievirus B3 infection</title><author>Respondek, Dorota ; Voss, Martin ; Kühlewindt, Ina ; Klingel, Karin ; Krüger, Elke ; Beling, Antje</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-d1e4c0c32d90045f0ef6277ed0c5adda3502ba73ce1461e43c0750d3a0c51e213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Antigen Presentation</topic><topic>Antigen processing</topic><topic>Antigens</topic><topic>Autoantigens - immunology</topic><topic>Biology and Life Sciences</topic><topic>Cardiomyocytes</topic><topic>Coxsackievirus infections</topic><topic>Coxsackievirus Infections - immunology</topic><topic>Coxsackievirus Infections - metabolism</topic><topic>Coxsackievirus Infections - virology</topic><topic>Coxsackieviruses</topic><topic>Cytokines</topic><topic>Enterovirus</topic><topic>Enterovirus B, Human - immunology</topic><topic>Epitopes</topic><topic>Female</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Homeostasis</topic><topic>Infections</topic><topic>Interferon</topic><topic>Laboratory animals</topic><topic>Major histocompatibility complex</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Myocarditis</topic><topic>Myocarditis - immunology</topic><topic>Myocarditis - metabolism</topic><topic>Myocarditis - virology</topic><topic>Oxidative stress</topic><topic>Peptides</topic><topic>Physiology</topic><topic>Picornaviridae</topic><topic>Proteasome Endopeptidase Complex - immunology</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Proteasome Endopeptidase Complex - physiology</topic><topic>Proteasomes</topic><topic>Proteins</topic><topic>Replication</topic><topic>Research and analysis methods</topic><topic>Stem cells</topic><topic>Studies</topic><topic>TLR3 protein</topic><topic>Toll-like receptors</topic><topic>Ubiquitin-proteasome system</topic><topic>Virus Replication</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Respondek, Dorota</creatorcontrib><creatorcontrib>Voss, Martin</creatorcontrib><creatorcontrib>Kühlewindt, Ina</creatorcontrib><creatorcontrib>Klingel, Karin</creatorcontrib><creatorcontrib>Krüger, Elke</creatorcontrib><creatorcontrib>Beling, Antje</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Respondek, Dorota</au><au>Voss, Martin</au><au>Kühlewindt, Ina</au><au>Klingel, Karin</au><au>Krüger, Elke</au><au>Beling, Antje</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PA28 modulates antigen processing and viral replication during coxsackievirus B3 infection</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-03-09</date><risdate>2017</risdate><volume>12</volume><issue>3</issue><spage>e0173259</spage><epage>e0173259</epage><pages>e0173259-e0173259</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The function of the proteasome is modulated at the level of subunit expression and by association with its regulatory complexes. During coxsackievirus B3 (CVB3) myocarditis, IFN-induced formation of immunoproteasomes (ip) is known to be critical for regulating immune modulating molecules. The function of the IFN-γ-inducible proteasome regulator subunits PA28 α and β, however, in this context was unknown. During viral myocarditis, we found an increased abundance of PA28β subunits in heart tissue. PA28α/β exists in PA28-20S-PA28 and PA700-20S-PA28 hybrid proteasome complexes in cells both with either predominant ip and standard proteasome (sp) expression. Being in line with reduced proteasome activity in PA28α/β-deficient cells, we observed increased levels of oxidized and poly-ubiquitinated proteins upon TLR3-activation in these cells. Moreover, PA28α/β is capable to interfere directly with viral replication of CVB3 and facilitates the generation of CVB3-derived MHC class I epitopes by the proteasome. In contrast to a distinct function of PA28α/β in vitro, gene ablation of PA28α/β in mice being on a genetic background with resistance towards the development of severe infection had no significant impact on disease progression. Other than reported for the ip, in this host PA28α/β is dispensable to meet the demand of increased peptide hydrolysis capacity by the proteasome during viral myocarditis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28278207</pmid><doi>10.1371/journal.pone.0173259</doi><tpages>e0173259</tpages><orcidid>https://orcid.org/0000-0002-1826-5248</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-03, Vol.12 (3), p.e0173259-e0173259
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1875841164
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Animals
Antigen Presentation
Antigen processing
Antigens
Autoantigens - immunology
Biology and Life Sciences
Cardiomyocytes
Coxsackievirus infections
Coxsackievirus Infections - immunology
Coxsackievirus Infections - metabolism
Coxsackievirus Infections - virology
Coxsackieviruses
Cytokines
Enterovirus
Enterovirus B, Human - immunology
Epitopes
Female
Genetic aspects
Health aspects
Heart
Heart diseases
Homeostasis
Infections
Interferon
Laboratory animals
Major histocompatibility complex
Medicine and Health Sciences
Mice
Mice, Inbred C57BL
Mice, Knockout
Myocarditis
Myocarditis - immunology
Myocarditis - metabolism
Myocarditis - virology
Oxidative stress
Peptides
Physiology
Picornaviridae
Proteasome Endopeptidase Complex - immunology
Proteasome Endopeptidase Complex - metabolism
Proteasome Endopeptidase Complex - physiology
Proteasomes
Proteins
Replication
Research and analysis methods
Stem cells
Studies
TLR3 protein
Toll-like receptors
Ubiquitin-proteasome system
Virus Replication
γ-Interferon
title PA28 modulates antigen processing and viral replication during coxsackievirus B3 infection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A23%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PA28%20modulates%20antigen%20processing%20and%20viral%20replication%20during%20coxsackievirus%20B3%20infection&rft.jtitle=PloS%20one&rft.au=Respondek,%20Dorota&rft.date=2017-03-09&rft.volume=12&rft.issue=3&rft.spage=e0173259&rft.epage=e0173259&rft.pages=e0173259-e0173259&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0173259&rft_dat=%3Cgale_plos_%3EA484740208%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875841164&rft_id=info:pmid/28278207&rft_galeid=A484740208&rft_doaj_id=oai_doaj_org_article_dd4b5fceddb149f682bb04c1cccb1de0&rfr_iscdi=true