Ste12/Fab1 phosphatidylinositol-3-phosphate 5-kinase is required for nitrogen-regulated mitotic commitment and cell size control
Tight coupling of cell growth and cell cycle progression enable cells to adjust their rate of division, and therefore size, to the demands of proliferation in varying nutritional environments. Nutrient stress promotes inhibition of Target Of Rapamycin Complex 1 (TORC1) activity. In fission yeast, re...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-03, Vol.12 (3), p.e0172740-e0172740 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0172740 |
---|---|
container_issue | 3 |
container_start_page | e0172740 |
container_title | PloS one |
container_volume | 12 |
creator | Cobley, David Hálová, Lenka Schauries, Marie Kaczmarek, Adrian Franz-Wachtel, Mirita Du, Wei Krug, Karsten Maček, Boris Petersen, Janni |
description | Tight coupling of cell growth and cell cycle progression enable cells to adjust their rate of division, and therefore size, to the demands of proliferation in varying nutritional environments. Nutrient stress promotes inhibition of Target Of Rapamycin Complex 1 (TORC1) activity. In fission yeast, reduced TORC1 activity advances mitotic onset and switches growth to a sustained proliferation at reduced cell size. A screen for mutants, that failed to advance mitosis upon nitrogen stress, identified a mutant in the PIKFYVE 1-phosphatidylinositol-3-phosphate 5-kinase fission yeast homolog Ste12. Ste12PIKFYVE deficient mutants were unable to advance the cell cycle to reduce cell size after a nitrogen downshift to poor nitrogen (proline) growth conditions. While it is well established that PI(3,5)P2 signalling is required for autophagy and that Ste12PIKFYVE mutants have enlarged vacuoles (yeast lysosomes), neither a block to autophagy or mutants that independently have enlarged vacuoles had any impact upon nitrogen control of mitotic commitment. The addition of rapamycin to Ste12PIKFYVE deficient mutants reduced cell size at division to suggest that Ste12PIKFYVE possibly functions upstream of TORC1. ste12 mutants display increased Torin1 (TOR inhibitor) sensitivity. However, no major impact on TORC1 or TORC2 activity was observed in the ste12 deficient mutants. In summary, Ste12PIKFYVE is required for nitrogen-stress mediated advancement of mitosis to reduce cell size at division. |
doi_str_mv | 10.1371/journal.pone.0172740 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1875378512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A484557784</galeid><doaj_id>oai_doaj_org_article_43e7c48d8a1441029d2049f2f39ece76</doaj_id><sourcerecordid>A484557784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6400-4121994da77522f835f03358f8cb8001e05a6daaae93a1217486adfea3ab01b73</originalsourceid><addsrcrecordid>eNqNk09v1DAQxSMEoqXwDRBEQkJwyNb_EjsXpKqisFKlShS4WrPJZNfFsbd2gignPjoOu612UQ9VDrHGv_fiec5k2UtKZpRLenzlx-DAztbe4YxQyaQgj7JDWnNWVIzwxzvrg-xZjFeElFxV1dPsgCkmOa2qw-zP5YCUHZ_BgubrlY_rFQymvbHG-WgGbwte3JYxL4sfxkHE3MQ84PVoArZ550PuzBD8El0RcDnahLZ5n9SDafLG92nZoxtycG3eoLV5NL8xbbgkss-zJx3YiC-276Ps29nHr6efi_OLT_PTk_OiqQQhhaCM1rVoQcqSsU7xsiOcl6pTzUIRQpGUULUAgDWHxEqhKmg7BA4LQheSH2WvN75r66Pehhc1VbLkUpWUJWK-IVoPV3odTA_hRnsw-l_Bh6WGkFqyqAVH2QjVKqBCUMLqlhFRd6zjNTYoq-T1Yfu1cdFj26T2A9g90_0dZ1Z66X_qkovUKE8G77YGwV-PGAfdmziFBw79OJ07RSBZLclDUCorpcQUwpv_0PuD2FJLSL0a1_l0xGYy1SdCibKUUolEze6h0tNib9LlYmdSfU_wfk8w_QD4a1jCGKOeX355OHvxfZ99u8OuEOywit6Og_Eu7oNiAzbBxxiwu7sPSvQ0U7dp6Gmm9HamkuzV7l3eiW6HiP8FnA8cLA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875378512</pqid></control><display><type>article</type><title>Ste12/Fab1 phosphatidylinositol-3-phosphate 5-kinase is required for nitrogen-regulated mitotic commitment and cell size control</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Cobley, David ; Hálová, Lenka ; Schauries, Marie ; Kaczmarek, Adrian ; Franz-Wachtel, Mirita ; Du, Wei ; Krug, Karsten ; Maček, Boris ; Petersen, Janni</creator><contributor>Mata, Juan</contributor><creatorcontrib>Cobley, David ; Hálová, Lenka ; Schauries, Marie ; Kaczmarek, Adrian ; Franz-Wachtel, Mirita ; Du, Wei ; Krug, Karsten ; Maček, Boris ; Petersen, Janni ; Mata, Juan</creatorcontrib><description>Tight coupling of cell growth and cell cycle progression enable cells to adjust their rate of division, and therefore size, to the demands of proliferation in varying nutritional environments. Nutrient stress promotes inhibition of Target Of Rapamycin Complex 1 (TORC1) activity. In fission yeast, reduced TORC1 activity advances mitotic onset and switches growth to a sustained proliferation at reduced cell size. A screen for mutants, that failed to advance mitosis upon nitrogen stress, identified a mutant in the PIKFYVE 1-phosphatidylinositol-3-phosphate 5-kinase fission yeast homolog Ste12. Ste12PIKFYVE deficient mutants were unable to advance the cell cycle to reduce cell size after a nitrogen downshift to poor nitrogen (proline) growth conditions. While it is well established that PI(3,5)P2 signalling is required for autophagy and that Ste12PIKFYVE mutants have enlarged vacuoles (yeast lysosomes), neither a block to autophagy or mutants that independently have enlarged vacuoles had any impact upon nitrogen control of mitotic commitment. The addition of rapamycin to Ste12PIKFYVE deficient mutants reduced cell size at division to suggest that Ste12PIKFYVE possibly functions upstream of TORC1. ste12 mutants display increased Torin1 (TOR inhibitor) sensitivity. However, no major impact on TORC1 or TORC2 activity was observed in the ste12 deficient mutants. In summary, Ste12PIKFYVE is required for nitrogen-stress mediated advancement of mitosis to reduce cell size at division.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0172740</identifier><identifier>PMID: 28273166</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acids ; Analysis ; Autophagy ; Biology and Life Sciences ; Cancer ; Cell cycle ; Cell death ; Cell division ; Cell growth ; Cell size ; Cells (Biology) ; Deficient mutant ; Fission ; Growth ; Growth conditions ; Homology ; Kinases ; Life sciences ; Lysosomes ; Mechanistic Target of Rapamycin Complex 1 ; Medical research ; Medicine ; Mitosis ; Multiprotein Complexes - genetics ; Multiprotein Complexes - metabolism ; Mutants ; Mutation ; Nitrogen ; Nitrogen - metabolism ; Nutrient deficiency ; Phagocytosis ; Phosphates ; Phosphatidylinositol 3-Kinases - genetics ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphatidylinositol phosphates ; Phosphorylation ; Physical Sciences ; Proline ; Protein Binding ; Protein Transport ; Proteins ; Rapamycin ; Research and Analysis Methods ; Schizosaccharomyces - cytology ; Schizosaccharomyces - physiology ; Schizosaccharomyces pombe ; Schizosaccharomyces pombe Proteins - genetics ; Schizosaccharomyces pombe Proteins - metabolism ; Signal Transduction ; Signaling ; Stress ; Stress, Physiological - genetics ; Stresses ; Switches ; TOR protein ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism ; Vacuoles ; Vacuoles - metabolism ; Yeast ; Yeasts</subject><ispartof>PloS one, 2017-03, Vol.12 (3), p.e0172740-e0172740</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Cobley et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Cobley et al 2017 Cobley et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6400-4121994da77522f835f03358f8cb8001e05a6daaae93a1217486adfea3ab01b73</citedby><cites>FETCH-LOGICAL-c6400-4121994da77522f835f03358f8cb8001e05a6daaae93a1217486adfea3ab01b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342193/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342193/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28273166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mata, Juan</contributor><creatorcontrib>Cobley, David</creatorcontrib><creatorcontrib>Hálová, Lenka</creatorcontrib><creatorcontrib>Schauries, Marie</creatorcontrib><creatorcontrib>Kaczmarek, Adrian</creatorcontrib><creatorcontrib>Franz-Wachtel, Mirita</creatorcontrib><creatorcontrib>Du, Wei</creatorcontrib><creatorcontrib>Krug, Karsten</creatorcontrib><creatorcontrib>Maček, Boris</creatorcontrib><creatorcontrib>Petersen, Janni</creatorcontrib><title>Ste12/Fab1 phosphatidylinositol-3-phosphate 5-kinase is required for nitrogen-regulated mitotic commitment and cell size control</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Tight coupling of cell growth and cell cycle progression enable cells to adjust their rate of division, and therefore size, to the demands of proliferation in varying nutritional environments. Nutrient stress promotes inhibition of Target Of Rapamycin Complex 1 (TORC1) activity. In fission yeast, reduced TORC1 activity advances mitotic onset and switches growth to a sustained proliferation at reduced cell size. A screen for mutants, that failed to advance mitosis upon nitrogen stress, identified a mutant in the PIKFYVE 1-phosphatidylinositol-3-phosphate 5-kinase fission yeast homolog Ste12. Ste12PIKFYVE deficient mutants were unable to advance the cell cycle to reduce cell size after a nitrogen downshift to poor nitrogen (proline) growth conditions. While it is well established that PI(3,5)P2 signalling is required for autophagy and that Ste12PIKFYVE mutants have enlarged vacuoles (yeast lysosomes), neither a block to autophagy or mutants that independently have enlarged vacuoles had any impact upon nitrogen control of mitotic commitment. The addition of rapamycin to Ste12PIKFYVE deficient mutants reduced cell size at division to suggest that Ste12PIKFYVE possibly functions upstream of TORC1. ste12 mutants display increased Torin1 (TOR inhibitor) sensitivity. However, no major impact on TORC1 or TORC2 activity was observed in the ste12 deficient mutants. In summary, Ste12PIKFYVE is required for nitrogen-stress mediated advancement of mitosis to reduce cell size at division.</description><subject>Amino acids</subject><subject>Analysis</subject><subject>Autophagy</subject><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell death</subject><subject>Cell division</subject><subject>Cell growth</subject><subject>Cell size</subject><subject>Cells (Biology)</subject><subject>Deficient mutant</subject><subject>Fission</subject><subject>Growth</subject><subject>Growth conditions</subject><subject>Homology</subject><subject>Kinases</subject><subject>Life sciences</subject><subject>Lysosomes</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Mitosis</subject><subject>Multiprotein Complexes - genetics</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>Nutrient deficiency</subject><subject>Phagocytosis</subject><subject>Phosphates</subject><subject>Phosphatidylinositol 3-Kinases - genetics</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphatidylinositol phosphates</subject><subject>Phosphorylation</subject><subject>Physical Sciences</subject><subject>Proline</subject><subject>Protein Binding</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Rapamycin</subject><subject>Research and Analysis Methods</subject><subject>Schizosaccharomyces - cytology</subject><subject>Schizosaccharomyces - physiology</subject><subject>Schizosaccharomyces pombe</subject><subject>Schizosaccharomyces pombe Proteins - genetics</subject><subject>Schizosaccharomyces pombe Proteins - metabolism</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Stress</subject><subject>Stress, Physiological - genetics</subject><subject>Stresses</subject><subject>Switches</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Vacuoles</subject><subject>Vacuoles - metabolism</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk09v1DAQxSMEoqXwDRBEQkJwyNb_EjsXpKqisFKlShS4WrPJZNfFsbd2gignPjoOu612UQ9VDrHGv_fiec5k2UtKZpRLenzlx-DAztbe4YxQyaQgj7JDWnNWVIzwxzvrg-xZjFeElFxV1dPsgCkmOa2qw-zP5YCUHZ_BgubrlY_rFQymvbHG-WgGbwte3JYxL4sfxkHE3MQ84PVoArZ550PuzBD8El0RcDnahLZ5n9SDafLG92nZoxtycG3eoLV5NL8xbbgkss-zJx3YiC-276Ps29nHr6efi_OLT_PTk_OiqQQhhaCM1rVoQcqSsU7xsiOcl6pTzUIRQpGUULUAgDWHxEqhKmg7BA4LQheSH2WvN75r66Pehhc1VbLkUpWUJWK-IVoPV3odTA_hRnsw-l_Bh6WGkFqyqAVH2QjVKqBCUMLqlhFRd6zjNTYoq-T1Yfu1cdFj26T2A9g90_0dZ1Z66X_qkovUKE8G77YGwV-PGAfdmziFBw79OJ07RSBZLclDUCorpcQUwpv_0PuD2FJLSL0a1_l0xGYy1SdCibKUUolEze6h0tNib9LlYmdSfU_wfk8w_QD4a1jCGKOeX355OHvxfZ99u8OuEOywit6Og_Eu7oNiAzbBxxiwu7sPSvQ0U7dp6Gmm9HamkuzV7l3eiW6HiP8FnA8cLA</recordid><startdate>20170308</startdate><enddate>20170308</enddate><creator>Cobley, David</creator><creator>Hálová, Lenka</creator><creator>Schauries, Marie</creator><creator>Kaczmarek, Adrian</creator><creator>Franz-Wachtel, Mirita</creator><creator>Du, Wei</creator><creator>Krug, Karsten</creator><creator>Maček, Boris</creator><creator>Petersen, Janni</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170308</creationdate><title>Ste12/Fab1 phosphatidylinositol-3-phosphate 5-kinase is required for nitrogen-regulated mitotic commitment and cell size control</title><author>Cobley, David ; Hálová, Lenka ; Schauries, Marie ; Kaczmarek, Adrian ; Franz-Wachtel, Mirita ; Du, Wei ; Krug, Karsten ; Maček, Boris ; Petersen, Janni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6400-4121994da77522f835f03358f8cb8001e05a6daaae93a1217486adfea3ab01b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino acids</topic><topic>Analysis</topic><topic>Autophagy</topic><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell death</topic><topic>Cell division</topic><topic>Cell growth</topic><topic>Cell size</topic><topic>Cells (Biology)</topic><topic>Deficient mutant</topic><topic>Fission</topic><topic>Growth</topic><topic>Growth conditions</topic><topic>Homology</topic><topic>Kinases</topic><topic>Life sciences</topic><topic>Lysosomes</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Mitosis</topic><topic>Multiprotein Complexes - genetics</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>Nutrient deficiency</topic><topic>Phagocytosis</topic><topic>Phosphates</topic><topic>Phosphatidylinositol 3-Kinases - genetics</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphatidylinositol phosphates</topic><topic>Phosphorylation</topic><topic>Physical Sciences</topic><topic>Proline</topic><topic>Protein Binding</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Rapamycin</topic><topic>Research and Analysis Methods</topic><topic>Schizosaccharomyces - cytology</topic><topic>Schizosaccharomyces - physiology</topic><topic>Schizosaccharomyces pombe</topic><topic>Schizosaccharomyces pombe Proteins - genetics</topic><topic>Schizosaccharomyces pombe Proteins - metabolism</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Stress</topic><topic>Stress, Physiological - genetics</topic><topic>Stresses</topic><topic>Switches</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Vacuoles</topic><topic>Vacuoles - metabolism</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cobley, David</creatorcontrib><creatorcontrib>Hálová, Lenka</creatorcontrib><creatorcontrib>Schauries, Marie</creatorcontrib><creatorcontrib>Kaczmarek, Adrian</creatorcontrib><creatorcontrib>Franz-Wachtel, Mirita</creatorcontrib><creatorcontrib>Du, Wei</creatorcontrib><creatorcontrib>Krug, Karsten</creatorcontrib><creatorcontrib>Maček, Boris</creatorcontrib><creatorcontrib>Petersen, Janni</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cobley, David</au><au>Hálová, Lenka</au><au>Schauries, Marie</au><au>Kaczmarek, Adrian</au><au>Franz-Wachtel, Mirita</au><au>Du, Wei</au><au>Krug, Karsten</au><au>Maček, Boris</au><au>Petersen, Janni</au><au>Mata, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ste12/Fab1 phosphatidylinositol-3-phosphate 5-kinase is required for nitrogen-regulated mitotic commitment and cell size control</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-03-08</date><risdate>2017</risdate><volume>12</volume><issue>3</issue><spage>e0172740</spage><epage>e0172740</epage><pages>e0172740-e0172740</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Tight coupling of cell growth and cell cycle progression enable cells to adjust their rate of division, and therefore size, to the demands of proliferation in varying nutritional environments. Nutrient stress promotes inhibition of Target Of Rapamycin Complex 1 (TORC1) activity. In fission yeast, reduced TORC1 activity advances mitotic onset and switches growth to a sustained proliferation at reduced cell size. A screen for mutants, that failed to advance mitosis upon nitrogen stress, identified a mutant in the PIKFYVE 1-phosphatidylinositol-3-phosphate 5-kinase fission yeast homolog Ste12. Ste12PIKFYVE deficient mutants were unable to advance the cell cycle to reduce cell size after a nitrogen downshift to poor nitrogen (proline) growth conditions. While it is well established that PI(3,5)P2 signalling is required for autophagy and that Ste12PIKFYVE mutants have enlarged vacuoles (yeast lysosomes), neither a block to autophagy or mutants that independently have enlarged vacuoles had any impact upon nitrogen control of mitotic commitment. The addition of rapamycin to Ste12PIKFYVE deficient mutants reduced cell size at division to suggest that Ste12PIKFYVE possibly functions upstream of TORC1. ste12 mutants display increased Torin1 (TOR inhibitor) sensitivity. However, no major impact on TORC1 or TORC2 activity was observed in the ste12 deficient mutants. In summary, Ste12PIKFYVE is required for nitrogen-stress mediated advancement of mitosis to reduce cell size at division.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28273166</pmid><doi>10.1371/journal.pone.0172740</doi><tpages>e0172740</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-03, Vol.12 (3), p.e0172740-e0172740 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1875378512 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino acids Analysis Autophagy Biology and Life Sciences Cancer Cell cycle Cell death Cell division Cell growth Cell size Cells (Biology) Deficient mutant Fission Growth Growth conditions Homology Kinases Life sciences Lysosomes Mechanistic Target of Rapamycin Complex 1 Medical research Medicine Mitosis Multiprotein Complexes - genetics Multiprotein Complexes - metabolism Mutants Mutation Nitrogen Nitrogen - metabolism Nutrient deficiency Phagocytosis Phosphates Phosphatidylinositol 3-Kinases - genetics Phosphatidylinositol 3-Kinases - metabolism Phosphatidylinositol phosphates Phosphorylation Physical Sciences Proline Protein Binding Protein Transport Proteins Rapamycin Research and Analysis Methods Schizosaccharomyces - cytology Schizosaccharomyces - physiology Schizosaccharomyces pombe Schizosaccharomyces pombe Proteins - genetics Schizosaccharomyces pombe Proteins - metabolism Signal Transduction Signaling Stress Stress, Physiological - genetics Stresses Switches TOR protein TOR Serine-Threonine Kinases - genetics TOR Serine-Threonine Kinases - metabolism Vacuoles Vacuoles - metabolism Yeast Yeasts |
title | Ste12/Fab1 phosphatidylinositol-3-phosphate 5-kinase is required for nitrogen-regulated mitotic commitment and cell size control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A03%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ste12/Fab1%20phosphatidylinositol-3-phosphate%205-kinase%20is%20required%20for%20nitrogen-regulated%20mitotic%20commitment%20and%20cell%20size%20control&rft.jtitle=PloS%20one&rft.au=Cobley,%20David&rft.date=2017-03-08&rft.volume=12&rft.issue=3&rft.spage=e0172740&rft.epage=e0172740&rft.pages=e0172740-e0172740&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0172740&rft_dat=%3Cgale_plos_%3EA484557784%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875378512&rft_id=info:pmid/28273166&rft_galeid=A484557784&rft_doaj_id=oai_doaj_org_article_43e7c48d8a1441029d2049f2f39ece76&rfr_iscdi=true |