Prediction and classification of Alzheimer disease based on quantification of MRI deformation
Detecting early morphological changes in the brain and making early diagnosis are important for Alzheimer's disease (AD). High resolution magnetic resonance imaging can be used to help diagnosis and prediction of the disease. In this paper, we proposed a machine learning method to discriminate...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-03, Vol.12 (3), p.e0173372 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | e0173372 |
container_title | PloS one |
container_volume | 12 |
creator | Long, Xiaojing Chen, Lifang Jiang, Chunxiang Zhang, Lijuan |
description | Detecting early morphological changes in the brain and making early diagnosis are important for Alzheimer's disease (AD). High resolution magnetic resonance imaging can be used to help diagnosis and prediction of the disease. In this paper, we proposed a machine learning method to discriminate patients with AD or mild cognitive impairment (MCI) from healthy elderly and to predict the AD conversion in MCI patients by computing and analyzing the regional morphological differences of brain between groups. Distance between each pair of subjects was quantified from a symmetric diffeomorphic registration, followed by an embedding algorithm and a learning approach for classification. The proposed method obtained accuracy of 96.5% in differentiating mild AD from healthy elderly with the whole-brain gray matter or temporal lobe as region of interest (ROI), 91.74% in differentiating progressive MCI from healthy elderly and 88.99% in classifying progressive MCI versus stable MCI with amygdala or hippocampus as ROI. This deformation-based method has made full use of the pair-wise macroscopic shape difference between groups and consequently increased the power for discrimination. |
doi_str_mv | 10.1371/journal.pone.0173372 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1874720990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A484264498</galeid><doaj_id>oai_doaj_org_article_65ae9ef3944849b6b79018eb9b5aa405</doaj_id><sourcerecordid>A484264498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c791t-3d6b641d7f7ff5af1a2207fc3dd9b55091035771a8ca6209372ee99a4fa20fcf3</originalsourceid><addsrcrecordid>eNqNk22L1DAQx4so3rn6DUQLguiLXZOmbZo3B8vhw8LJyfnwTsI0D7tZ0mYvaUX99Ka7vWMr9-IINGHym-n8JzNJ8hyjBSYUv9u63rdgFzvXqgXClBCaPUhOMSPZvMwQeXh0PkmehLBFqCBVWT5OTrIqK3NE8Wny84tX0ojOuDaFVqbCQghGGwF7k9Pp0v7dKNMon0oTFASV1vEj03h73UPbTeDPV6tUKu18szc9TR5psEE9G_dZ8v3D-2_nn-YXlx9X58uLuaAMd3Miy7rMsaSaal2AxpBliGpBpGR1USCGESkoxVAJiHJYVKoUY5BryJAWmsySl4e4O-sCHysTOK5oTiPPUCRWB0I62PKdNw34P9yB4XuD82sOvjPCKl4WoJjShOV5lbO6rClDuFJ1TAUgjzWcJWfj3_q6UVKotvNgJ0GnN63Z8LX7xQtCqgoPAd6MAby77lXoeGOCUNZCq1y_z5tWUTW5F1rgHGfVIPHVf-jdhRipNUStptUupiiGoHwZ9ca-yFkVqcUdVFxSNUbEjtMm2icObycOkenU724NfQh89fXq_uzljyn7-ojdKLDdJjjbD90VpmB-AIV3IXilb98DIz4MzE01-DAwfByY6Pbi-C1vnW4mhPwD4ycP4Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1874720990</pqid></control><display><type>article</type><title>Prediction and classification of Alzheimer disease based on quantification of MRI deformation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Long, Xiaojing ; Chen, Lifang ; Jiang, Chunxiang ; Zhang, Lijuan</creator><contributor>Chen, Kewei</contributor><creatorcontrib>Long, Xiaojing ; Chen, Lifang ; Jiang, Chunxiang ; Zhang, Lijuan ; Alzheimer’s Disease Neuroimaging Initiative ; Chen, Kewei</creatorcontrib><description>Detecting early morphological changes in the brain and making early diagnosis are important for Alzheimer's disease (AD). High resolution magnetic resonance imaging can be used to help diagnosis and prediction of the disease. In this paper, we proposed a machine learning method to discriminate patients with AD or mild cognitive impairment (MCI) from healthy elderly and to predict the AD conversion in MCI patients by computing and analyzing the regional morphological differences of brain between groups. Distance between each pair of subjects was quantified from a symmetric diffeomorphic registration, followed by an embedding algorithm and a learning approach for classification. The proposed method obtained accuracy of 96.5% in differentiating mild AD from healthy elderly with the whole-brain gray matter or temporal lobe as region of interest (ROI), 91.74% in differentiating progressive MCI from healthy elderly and 88.99% in classifying progressive MCI versus stable MCI with amygdala or hippocampus as ROI. This deformation-based method has made full use of the pair-wise macroscopic shape difference between groups and consequently increased the power for discrimination.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0173372</identifier><identifier>PMID: 28264071</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Aged ; Aging ; Algorithms ; Alzheimer Disease - diagnostic imaging ; Alzheimer Disease - pathology ; Alzheimer's disease ; Alzheimers disease ; Amygdala ; Artificial intelligence ; Biology and Life Sciences ; Biomarkers ; Brain ; Brain - pathology ; Brain research ; Care and treatment ; Change detection ; Classification ; Cognitive ability ; Deformation ; Dementia ; Diagnosis ; Discriminant analysis ; Embedding ; Euclidean space ; Female ; Geriatrics ; Humans ; Image processing ; Image Processing, Computer-Assisted ; Image resolution ; Learning algorithms ; Machine Learning ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Medical imaging ; Medicine and Health Sciences ; Middle Aged ; Models, Statistical ; Neurodegenerative diseases ; Neuroimaging ; Neurology ; Neurosciences ; NMR ; Nuclear magnetic resonance ; Older people ; Pathological physiology ; Patients ; People and Places ; Regional analysis ; Reproducibility of Results ; Sensitivity and Specificity ; Studies ; Substantia grisea ; Teaching methods ; Temporal lobe ; Tomography</subject><ispartof>PloS one, 2017-03, Vol.12 (3), p.e0173372</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Long et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Long et al 2017 Long et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c791t-3d6b641d7f7ff5af1a2207fc3dd9b55091035771a8ca6209372ee99a4fa20fcf3</citedby><cites>FETCH-LOGICAL-c791t-3d6b641d7f7ff5af1a2207fc3dd9b55091035771a8ca6209372ee99a4fa20fcf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5338815/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5338815/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28264071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chen, Kewei</contributor><creatorcontrib>Long, Xiaojing</creatorcontrib><creatorcontrib>Chen, Lifang</creatorcontrib><creatorcontrib>Jiang, Chunxiang</creatorcontrib><creatorcontrib>Zhang, Lijuan</creatorcontrib><creatorcontrib>Alzheimer’s Disease Neuroimaging Initiative</creatorcontrib><title>Prediction and classification of Alzheimer disease based on quantification of MRI deformation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Detecting early morphological changes in the brain and making early diagnosis are important for Alzheimer's disease (AD). High resolution magnetic resonance imaging can be used to help diagnosis and prediction of the disease. In this paper, we proposed a machine learning method to discriminate patients with AD or mild cognitive impairment (MCI) from healthy elderly and to predict the AD conversion in MCI patients by computing and analyzing the regional morphological differences of brain between groups. Distance between each pair of subjects was quantified from a symmetric diffeomorphic registration, followed by an embedding algorithm and a learning approach for classification. The proposed method obtained accuracy of 96.5% in differentiating mild AD from healthy elderly with the whole-brain gray matter or temporal lobe as region of interest (ROI), 91.74% in differentiating progressive MCI from healthy elderly and 88.99% in classifying progressive MCI versus stable MCI with amygdala or hippocampus as ROI. This deformation-based method has made full use of the pair-wise macroscopic shape difference between groups and consequently increased the power for discrimination.</description><subject>Adult</subject><subject>Aged</subject><subject>Aging</subject><subject>Algorithms</subject><subject>Alzheimer Disease - diagnostic imaging</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease</subject><subject>Alzheimers disease</subject><subject>Amygdala</subject><subject>Artificial intelligence</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Brain</subject><subject>Brain - pathology</subject><subject>Brain research</subject><subject>Care and treatment</subject><subject>Change detection</subject><subject>Classification</subject><subject>Cognitive ability</subject><subject>Deformation</subject><subject>Dementia</subject><subject>Diagnosis</subject><subject>Discriminant analysis</subject><subject>Embedding</subject><subject>Euclidean space</subject><subject>Female</subject><subject>Geriatrics</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image resolution</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Older people</subject><subject>Pathological physiology</subject><subject>Patients</subject><subject>People and Places</subject><subject>Regional analysis</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Studies</subject><subject>Substantia grisea</subject><subject>Teaching methods</subject><subject>Temporal lobe</subject><subject>Tomography</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk22L1DAQx4so3rn6DUQLguiLXZOmbZo3B8vhw8LJyfnwTsI0D7tZ0mYvaUX99Ka7vWMr9-IINGHym-n8JzNJ8hyjBSYUv9u63rdgFzvXqgXClBCaPUhOMSPZvMwQeXh0PkmehLBFqCBVWT5OTrIqK3NE8Wny84tX0ojOuDaFVqbCQghGGwF7k9Pp0v7dKNMon0oTFASV1vEj03h73UPbTeDPV6tUKu18szc9TR5psEE9G_dZ8v3D-2_nn-YXlx9X58uLuaAMd3Miy7rMsaSaal2AxpBliGpBpGR1USCGESkoxVAJiHJYVKoUY5BryJAWmsySl4e4O-sCHysTOK5oTiPPUCRWB0I62PKdNw34P9yB4XuD82sOvjPCKl4WoJjShOV5lbO6rClDuFJ1TAUgjzWcJWfj3_q6UVKotvNgJ0GnN63Z8LX7xQtCqgoPAd6MAby77lXoeGOCUNZCq1y_z5tWUTW5F1rgHGfVIPHVf-jdhRipNUStptUupiiGoHwZ9ca-yFkVqcUdVFxSNUbEjtMm2icObycOkenU724NfQh89fXq_uzljyn7-ojdKLDdJjjbD90VpmB-AIV3IXilb98DIz4MzE01-DAwfByY6Pbi-C1vnW4mhPwD4ycP4Q</recordid><startdate>20170306</startdate><enddate>20170306</enddate><creator>Long, Xiaojing</creator><creator>Chen, Lifang</creator><creator>Jiang, Chunxiang</creator><creator>Zhang, Lijuan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170306</creationdate><title>Prediction and classification of Alzheimer disease based on quantification of MRI deformation</title><author>Long, Xiaojing ; Chen, Lifang ; Jiang, Chunxiang ; Zhang, Lijuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c791t-3d6b641d7f7ff5af1a2207fc3dd9b55091035771a8ca6209372ee99a4fa20fcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aging</topic><topic>Algorithms</topic><topic>Alzheimer Disease - diagnostic imaging</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease</topic><topic>Alzheimers disease</topic><topic>Amygdala</topic><topic>Artificial intelligence</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Brain</topic><topic>Brain - pathology</topic><topic>Brain research</topic><topic>Care and treatment</topic><topic>Change detection</topic><topic>Classification</topic><topic>Cognitive ability</topic><topic>Deformation</topic><topic>Dementia</topic><topic>Diagnosis</topic><topic>Discriminant analysis</topic><topic>Embedding</topic><topic>Euclidean space</topic><topic>Female</topic><topic>Geriatrics</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image resolution</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Older people</topic><topic>Pathological physiology</topic><topic>Patients</topic><topic>People and Places</topic><topic>Regional analysis</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Studies</topic><topic>Substantia grisea</topic><topic>Teaching methods</topic><topic>Temporal lobe</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Xiaojing</creatorcontrib><creatorcontrib>Chen, Lifang</creatorcontrib><creatorcontrib>Jiang, Chunxiang</creatorcontrib><creatorcontrib>Zhang, Lijuan</creatorcontrib><creatorcontrib>Alzheimer’s Disease Neuroimaging Initiative</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Xiaojing</au><au>Chen, Lifang</au><au>Jiang, Chunxiang</au><au>Zhang, Lijuan</au><au>Chen, Kewei</au><aucorp>Alzheimer’s Disease Neuroimaging Initiative</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction and classification of Alzheimer disease based on quantification of MRI deformation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-03-06</date><risdate>2017</risdate><volume>12</volume><issue>3</issue><spage>e0173372</spage><pages>e0173372-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Detecting early morphological changes in the brain and making early diagnosis are important for Alzheimer's disease (AD). High resolution magnetic resonance imaging can be used to help diagnosis and prediction of the disease. In this paper, we proposed a machine learning method to discriminate patients with AD or mild cognitive impairment (MCI) from healthy elderly and to predict the AD conversion in MCI patients by computing and analyzing the regional morphological differences of brain between groups. Distance between each pair of subjects was quantified from a symmetric diffeomorphic registration, followed by an embedding algorithm and a learning approach for classification. The proposed method obtained accuracy of 96.5% in differentiating mild AD from healthy elderly with the whole-brain gray matter or temporal lobe as region of interest (ROI), 91.74% in differentiating progressive MCI from healthy elderly and 88.99% in classifying progressive MCI versus stable MCI with amygdala or hippocampus as ROI. This deformation-based method has made full use of the pair-wise macroscopic shape difference between groups and consequently increased the power for discrimination.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28264071</pmid><doi>10.1371/journal.pone.0173372</doi><tpages>e0173372</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-03, Vol.12 (3), p.e0173372 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1874720990 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adult Aged Aging Algorithms Alzheimer Disease - diagnostic imaging Alzheimer Disease - pathology Alzheimer's disease Alzheimers disease Amygdala Artificial intelligence Biology and Life Sciences Biomarkers Brain Brain - pathology Brain research Care and treatment Change detection Classification Cognitive ability Deformation Dementia Diagnosis Discriminant analysis Embedding Euclidean space Female Geriatrics Humans Image processing Image Processing, Computer-Assisted Image resolution Learning algorithms Machine Learning Magnetic resonance Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Medical imaging Medicine and Health Sciences Middle Aged Models, Statistical Neurodegenerative diseases Neuroimaging Neurology Neurosciences NMR Nuclear magnetic resonance Older people Pathological physiology Patients People and Places Regional analysis Reproducibility of Results Sensitivity and Specificity Studies Substantia grisea Teaching methods Temporal lobe Tomography |
title | Prediction and classification of Alzheimer disease based on quantification of MRI deformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A32%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20and%20classification%20of%20Alzheimer%20disease%20based%20on%20quantification%20of%20MRI%20deformation&rft.jtitle=PloS%20one&rft.au=Long,%20Xiaojing&rft.aucorp=Alzheimer%E2%80%99s%20Disease%20Neuroimaging%20Initiative&rft.date=2017-03-06&rft.volume=12&rft.issue=3&rft.spage=e0173372&rft.pages=e0173372-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0173372&rft_dat=%3Cgale_plos_%3EA484264498%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1874720990&rft_id=info:pmid/28264071&rft_galeid=A484264498&rft_doaj_id=oai_doaj_org_article_65ae9ef3944849b6b79018eb9b5aa405&rfr_iscdi=true |