Comparative pathology of rhesus macaque and common marmoset animal models with Middle East respiratory syndrome coronavirus
Middle East respiratory syndrome (MERS), which is caused by a newly discovered coronavirus (CoV), has recently emerged. It causes severe viral pneumonia and is associated with a high fatality rate. However, the pathogenesis, comparative pathology and inflammatory cell response of rhesus macaques and...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-02, Vol.12 (2), p.e0172093-e0172093 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0172093 |
---|---|
container_issue | 2 |
container_start_page | e0172093 |
container_title | PloS one |
container_volume | 12 |
creator | Yu, Pin Xu, Yanfeng Deng, Wei Bao, Linlin Huang, Lan Xu, Yuhuan Yao, Yanfeng Qin, Chuan |
description | Middle East respiratory syndrome (MERS), which is caused by a newly discovered coronavirus (CoV), has recently emerged. It causes severe viral pneumonia and is associated with a high fatality rate. However, the pathogenesis, comparative pathology and inflammatory cell response of rhesus macaques and common marmosets experimentally infected with MERS-CoV are unknown. We describe the histopathological, immunohistochemical, and ultrastructural findings from rhesus macaque and common marmoset animal models of MERS-CoV infection. The main histopathological findings in the lungs of rhesus macaques and common marmosets were varying degrees of pulmonary lesions, including pneumonia, pulmonary oedema, haemorrhage, degeneration and necrosis of the pneumocytes and bronchial epithelial cells, and inflammatory cell infiltration. The characteristic inflammatory cells in the lungs of rhesus macaques and common marmosets were eosinophils and neutrophils, respectively. Based on these observations, the lungs of rhesus macaques and common marmosets appeared to develop chronic and acute pneumonia, respectively. MERS-CoV antigens and viral RNA were identified in type I and II pneumocytes, alveolar macrophages and bronchial epithelial cells, and ultrastructural observations showed that viral protein was found in type II pneumocytes and inflammatory cells in both species. Correspondingly, the entry receptor DDP4 was found in type I and II pneumocytes, bronchial epithelial cells, and alveolar macrophages. The rhesus macaque and common marmoset animal models of MERS-CoV can be used as a tool to mimic the oncome of MERS-CoV infections in humans. These models can help to provide a better understanding of the pathogenic process of this virus and to develop effective medications and prophylactic treatments. |
doi_str_mv | 10.1371/journal.pone.0172093 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1871803083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A482540606</galeid><doaj_id>oai_doaj_org_article_214eb7e0595841d8bf3883c7947e6215</doaj_id><sourcerecordid>A482540606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-576a2a25180ffc5d5eb43d951c253176c1c3584c7436740d3eb17dc5b5ce55ff3</originalsourceid><addsrcrecordid>eNqNk1tv0zAUgCMEYmPwDxBEQkLw0OJLHCcvSFM1oNLQJG6vlmOftK6cuLOdQsWfx127qUF7mPKQ6Pg7n4-Pc7LsJUZTTDn-sHKD76Wdrl0PU4Q5QTV9lJ3impJJSRB9fPR9kj0LYYUQo1VZPs1OSEVoUVN-mv2duW4tvYxmA_laxqWzbrHNXZv7JYQh5J1U8nqAXPY6V67rXJ9CvnMBYoqZTtq8cxpsyH-buMy_Gq0t5BcyxNxDWJukdn6bh22vvesgObzr5cb4ITzPnrTSBnhxeJ9lPz9d_Jh9mVxefZ7Pzi8nihMWJ4yXkkjCcIXaVjHNoCmorhlWhFHMS4UVZVWheEFLXiBNocFcK9YwBYy1LT3LXu-9a-uCOPQtCFzxpKSooomY7wnt5EqsfTqW3wonjbgJOL8Q0kejLAiCC2g4IFanPbGumpZWFVW8LjiUBLPk-njYbWg60Ar66KUdSccrvVmKhdsIRgkreJ0E7w4C71LnQxSdCQqslT244aZuXhV1TfhDUMI4I_WurDf_ofc34kAtZDqr6VuXSlQ7qTgvqlQfKlGZqOk9VHo0dEal_7E1KT5KeD9KSEyEP3EhhxDE_Pu3h7NXv8bs2yN2CdLGZXB2iMb1YQwWe1B5F4KH9u4-MBK7cbrthtiNkziMU0p7dXyXd0m380P_AenNGy4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1871803083</pqid></control><display><type>article</type><title>Comparative pathology of rhesus macaque and common marmoset animal models with Middle East respiratory syndrome coronavirus</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yu, Pin ; Xu, Yanfeng ; Deng, Wei ; Bao, Linlin ; Huang, Lan ; Xu, Yuhuan ; Yao, Yanfeng ; Qin, Chuan</creator><creatorcontrib>Yu, Pin ; Xu, Yanfeng ; Deng, Wei ; Bao, Linlin ; Huang, Lan ; Xu, Yuhuan ; Yao, Yanfeng ; Qin, Chuan</creatorcontrib><description>Middle East respiratory syndrome (MERS), which is caused by a newly discovered coronavirus (CoV), has recently emerged. It causes severe viral pneumonia and is associated with a high fatality rate. However, the pathogenesis, comparative pathology and inflammatory cell response of rhesus macaques and common marmosets experimentally infected with MERS-CoV are unknown. We describe the histopathological, immunohistochemical, and ultrastructural findings from rhesus macaque and common marmoset animal models of MERS-CoV infection. The main histopathological findings in the lungs of rhesus macaques and common marmosets were varying degrees of pulmonary lesions, including pneumonia, pulmonary oedema, haemorrhage, degeneration and necrosis of the pneumocytes and bronchial epithelial cells, and inflammatory cell infiltration. The characteristic inflammatory cells in the lungs of rhesus macaques and common marmosets were eosinophils and neutrophils, respectively. Based on these observations, the lungs of rhesus macaques and common marmosets appeared to develop chronic and acute pneumonia, respectively. MERS-CoV antigens and viral RNA were identified in type I and II pneumocytes, alveolar macrophages and bronchial epithelial cells, and ultrastructural observations showed that viral protein was found in type II pneumocytes and inflammatory cells in both species. Correspondingly, the entry receptor DDP4 was found in type I and II pneumocytes, bronchial epithelial cells, and alveolar macrophages. The rhesus macaque and common marmoset animal models of MERS-CoV can be used as a tool to mimic the oncome of MERS-CoV infections in humans. These models can help to provide a better understanding of the pathogenic process of this virus and to develop effective medications and prophylactic treatments.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0172093</identifier><identifier>PMID: 28234937</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alveoli ; Analysis ; Animal models ; Animal sciences ; Animals ; Antigens ; Biology and life sciences ; Callithrix ; Callithrix - physiology ; Callithrix - virology ; Comparative analysis ; Coronaviridae ; Coronavirus infections ; Coronavirus Infections - diagnosis ; Coronavirus Infections - pathology ; Coronaviruses ; Degeneration ; Diagnosis ; Disease Models, Animal ; Edema ; Eosinophils ; Epithelial cells ; Hemorrhage ; Humans ; Immunohistochemistry ; In Situ Hybridization ; Infections ; Infectious diseases ; Infiltration ; Inflammation ; Laboratory animals ; Leukocytes (eosinophilic) ; Leukocytes (neutrophilic) ; Lung - virology ; Lungs ; Macaca mulatta ; Macaca mulatta - physiology ; Macaca mulatta - virology ; Macrophages ; Macrophages, Alveolar - metabolism ; Medicine ; Medicine and Health Sciences ; Middle East Respiratory Syndrome Coronavirus ; Pathogenesis ; Pathological histology ; Pathology ; Pneumocytes ; Pneumonia ; Pulmonary lesions ; Research and Analysis Methods ; Respiratory diseases ; Ribonucleic acid ; Risk factors ; RNA ; RNA, Viral ; Rodents ; Species Specificity ; Viral infections ; Virus Replication ; Viruses ; Zoology</subject><ispartof>PloS one, 2017-02, Vol.12 (2), p.e0172093-e0172093</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Yu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Yu et al 2017 Yu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-576a2a25180ffc5d5eb43d951c253176c1c3584c7436740d3eb17dc5b5ce55ff3</citedby><cites>FETCH-LOGICAL-c725t-576a2a25180ffc5d5eb43d951c253176c1c3584c7436740d3eb17dc5b5ce55ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5325479/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5325479/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28234937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Pin</creatorcontrib><creatorcontrib>Xu, Yanfeng</creatorcontrib><creatorcontrib>Deng, Wei</creatorcontrib><creatorcontrib>Bao, Linlin</creatorcontrib><creatorcontrib>Huang, Lan</creatorcontrib><creatorcontrib>Xu, Yuhuan</creatorcontrib><creatorcontrib>Yao, Yanfeng</creatorcontrib><creatorcontrib>Qin, Chuan</creatorcontrib><title>Comparative pathology of rhesus macaque and common marmoset animal models with Middle East respiratory syndrome coronavirus</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Middle East respiratory syndrome (MERS), which is caused by a newly discovered coronavirus (CoV), has recently emerged. It causes severe viral pneumonia and is associated with a high fatality rate. However, the pathogenesis, comparative pathology and inflammatory cell response of rhesus macaques and common marmosets experimentally infected with MERS-CoV are unknown. We describe the histopathological, immunohistochemical, and ultrastructural findings from rhesus macaque and common marmoset animal models of MERS-CoV infection. The main histopathological findings in the lungs of rhesus macaques and common marmosets were varying degrees of pulmonary lesions, including pneumonia, pulmonary oedema, haemorrhage, degeneration and necrosis of the pneumocytes and bronchial epithelial cells, and inflammatory cell infiltration. The characteristic inflammatory cells in the lungs of rhesus macaques and common marmosets were eosinophils and neutrophils, respectively. Based on these observations, the lungs of rhesus macaques and common marmosets appeared to develop chronic and acute pneumonia, respectively. MERS-CoV antigens and viral RNA were identified in type I and II pneumocytes, alveolar macrophages and bronchial epithelial cells, and ultrastructural observations showed that viral protein was found in type II pneumocytes and inflammatory cells in both species. Correspondingly, the entry receptor DDP4 was found in type I and II pneumocytes, bronchial epithelial cells, and alveolar macrophages. The rhesus macaque and common marmoset animal models of MERS-CoV can be used as a tool to mimic the oncome of MERS-CoV infections in humans. These models can help to provide a better understanding of the pathogenic process of this virus and to develop effective medications and prophylactic treatments.</description><subject>Alveoli</subject><subject>Analysis</subject><subject>Animal models</subject><subject>Animal sciences</subject><subject>Animals</subject><subject>Antigens</subject><subject>Biology and life sciences</subject><subject>Callithrix</subject><subject>Callithrix - physiology</subject><subject>Callithrix - virology</subject><subject>Comparative analysis</subject><subject>Coronaviridae</subject><subject>Coronavirus infections</subject><subject>Coronavirus Infections - diagnosis</subject><subject>Coronavirus Infections - pathology</subject><subject>Coronaviruses</subject><subject>Degeneration</subject><subject>Diagnosis</subject><subject>Disease Models, Animal</subject><subject>Edema</subject><subject>Eosinophils</subject><subject>Epithelial cells</subject><subject>Hemorrhage</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>In Situ Hybridization</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Infiltration</subject><subject>Inflammation</subject><subject>Laboratory animals</subject><subject>Leukocytes (eosinophilic)</subject><subject>Leukocytes (neutrophilic)</subject><subject>Lung - virology</subject><subject>Lungs</subject><subject>Macaca mulatta</subject><subject>Macaca mulatta - physiology</subject><subject>Macaca mulatta - virology</subject><subject>Macrophages</subject><subject>Macrophages, Alveolar - metabolism</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Middle East Respiratory Syndrome Coronavirus</subject><subject>Pathogenesis</subject><subject>Pathological histology</subject><subject>Pathology</subject><subject>Pneumocytes</subject><subject>Pneumonia</subject><subject>Pulmonary lesions</subject><subject>Research and Analysis Methods</subject><subject>Respiratory diseases</subject><subject>Ribonucleic acid</subject><subject>Risk factors</subject><subject>RNA</subject><subject>RNA, Viral</subject><subject>Rodents</subject><subject>Species Specificity</subject><subject>Viral infections</subject><subject>Virus Replication</subject><subject>Viruses</subject><subject>Zoology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1tv0zAUgCMEYmPwDxBEQkLw0OJLHCcvSFM1oNLQJG6vlmOftK6cuLOdQsWfx127qUF7mPKQ6Pg7n4-Pc7LsJUZTTDn-sHKD76Wdrl0PU4Q5QTV9lJ3impJJSRB9fPR9kj0LYYUQo1VZPs1OSEVoUVN-mv2duW4tvYxmA_laxqWzbrHNXZv7JYQh5J1U8nqAXPY6V67rXJ9CvnMBYoqZTtq8cxpsyH-buMy_Gq0t5BcyxNxDWJukdn6bh22vvesgObzr5cb4ITzPnrTSBnhxeJ9lPz9d_Jh9mVxefZ7Pzi8nihMWJ4yXkkjCcIXaVjHNoCmorhlWhFHMS4UVZVWheEFLXiBNocFcK9YwBYy1LT3LXu-9a-uCOPQtCFzxpKSooomY7wnt5EqsfTqW3wonjbgJOL8Q0kejLAiCC2g4IFanPbGumpZWFVW8LjiUBLPk-njYbWg60Ar66KUdSccrvVmKhdsIRgkreJ0E7w4C71LnQxSdCQqslT244aZuXhV1TfhDUMI4I_WurDf_ofc34kAtZDqr6VuXSlQ7qTgvqlQfKlGZqOk9VHo0dEal_7E1KT5KeD9KSEyEP3EhhxDE_Pu3h7NXv8bs2yN2CdLGZXB2iMb1YQwWe1B5F4KH9u4-MBK7cbrthtiNkziMU0p7dXyXd0m380P_AenNGy4</recordid><startdate>20170224</startdate><enddate>20170224</enddate><creator>Yu, Pin</creator><creator>Xu, Yanfeng</creator><creator>Deng, Wei</creator><creator>Bao, Linlin</creator><creator>Huang, Lan</creator><creator>Xu, Yuhuan</creator><creator>Yao, Yanfeng</creator><creator>Qin, Chuan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170224</creationdate><title>Comparative pathology of rhesus macaque and common marmoset animal models with Middle East respiratory syndrome coronavirus</title><author>Yu, Pin ; Xu, Yanfeng ; Deng, Wei ; Bao, Linlin ; Huang, Lan ; Xu, Yuhuan ; Yao, Yanfeng ; Qin, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-576a2a25180ffc5d5eb43d951c253176c1c3584c7436740d3eb17dc5b5ce55ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alveoli</topic><topic>Analysis</topic><topic>Animal models</topic><topic>Animal sciences</topic><topic>Animals</topic><topic>Antigens</topic><topic>Biology and life sciences</topic><topic>Callithrix</topic><topic>Callithrix - physiology</topic><topic>Callithrix - virology</topic><topic>Comparative analysis</topic><topic>Coronaviridae</topic><topic>Coronavirus infections</topic><topic>Coronavirus Infections - diagnosis</topic><topic>Coronavirus Infections - pathology</topic><topic>Coronaviruses</topic><topic>Degeneration</topic><topic>Diagnosis</topic><topic>Disease Models, Animal</topic><topic>Edema</topic><topic>Eosinophils</topic><topic>Epithelial cells</topic><topic>Hemorrhage</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>In Situ Hybridization</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Infiltration</topic><topic>Inflammation</topic><topic>Laboratory animals</topic><topic>Leukocytes (eosinophilic)</topic><topic>Leukocytes (neutrophilic)</topic><topic>Lung - virology</topic><topic>Lungs</topic><topic>Macaca mulatta</topic><topic>Macaca mulatta - physiology</topic><topic>Macaca mulatta - virology</topic><topic>Macrophages</topic><topic>Macrophages, Alveolar - metabolism</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Middle East Respiratory Syndrome Coronavirus</topic><topic>Pathogenesis</topic><topic>Pathological histology</topic><topic>Pathology</topic><topic>Pneumocytes</topic><topic>Pneumonia</topic><topic>Pulmonary lesions</topic><topic>Research and Analysis Methods</topic><topic>Respiratory diseases</topic><topic>Ribonucleic acid</topic><topic>Risk factors</topic><topic>RNA</topic><topic>RNA, Viral</topic><topic>Rodents</topic><topic>Species Specificity</topic><topic>Viral infections</topic><topic>Virus Replication</topic><topic>Viruses</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Pin</creatorcontrib><creatorcontrib>Xu, Yanfeng</creatorcontrib><creatorcontrib>Deng, Wei</creatorcontrib><creatorcontrib>Bao, Linlin</creatorcontrib><creatorcontrib>Huang, Lan</creatorcontrib><creatorcontrib>Xu, Yuhuan</creatorcontrib><creatorcontrib>Yao, Yanfeng</creatorcontrib><creatorcontrib>Qin, Chuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Pin</au><au>Xu, Yanfeng</au><au>Deng, Wei</au><au>Bao, Linlin</au><au>Huang, Lan</au><au>Xu, Yuhuan</au><au>Yao, Yanfeng</au><au>Qin, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative pathology of rhesus macaque and common marmoset animal models with Middle East respiratory syndrome coronavirus</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-02-24</date><risdate>2017</risdate><volume>12</volume><issue>2</issue><spage>e0172093</spage><epage>e0172093</epage><pages>e0172093-e0172093</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Middle East respiratory syndrome (MERS), which is caused by a newly discovered coronavirus (CoV), has recently emerged. It causes severe viral pneumonia and is associated with a high fatality rate. However, the pathogenesis, comparative pathology and inflammatory cell response of rhesus macaques and common marmosets experimentally infected with MERS-CoV are unknown. We describe the histopathological, immunohistochemical, and ultrastructural findings from rhesus macaque and common marmoset animal models of MERS-CoV infection. The main histopathological findings in the lungs of rhesus macaques and common marmosets were varying degrees of pulmonary lesions, including pneumonia, pulmonary oedema, haemorrhage, degeneration and necrosis of the pneumocytes and bronchial epithelial cells, and inflammatory cell infiltration. The characteristic inflammatory cells in the lungs of rhesus macaques and common marmosets were eosinophils and neutrophils, respectively. Based on these observations, the lungs of rhesus macaques and common marmosets appeared to develop chronic and acute pneumonia, respectively. MERS-CoV antigens and viral RNA were identified in type I and II pneumocytes, alveolar macrophages and bronchial epithelial cells, and ultrastructural observations showed that viral protein was found in type II pneumocytes and inflammatory cells in both species. Correspondingly, the entry receptor DDP4 was found in type I and II pneumocytes, bronchial epithelial cells, and alveolar macrophages. The rhesus macaque and common marmoset animal models of MERS-CoV can be used as a tool to mimic the oncome of MERS-CoV infections in humans. These models can help to provide a better understanding of the pathogenic process of this virus and to develop effective medications and prophylactic treatments.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28234937</pmid><doi>10.1371/journal.pone.0172093</doi><tpages>e0172093</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-02, Vol.12 (2), p.e0172093-e0172093 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1871803083 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Alveoli Analysis Animal models Animal sciences Animals Antigens Biology and life sciences Callithrix Callithrix - physiology Callithrix - virology Comparative analysis Coronaviridae Coronavirus infections Coronavirus Infections - diagnosis Coronavirus Infections - pathology Coronaviruses Degeneration Diagnosis Disease Models, Animal Edema Eosinophils Epithelial cells Hemorrhage Humans Immunohistochemistry In Situ Hybridization Infections Infectious diseases Infiltration Inflammation Laboratory animals Leukocytes (eosinophilic) Leukocytes (neutrophilic) Lung - virology Lungs Macaca mulatta Macaca mulatta - physiology Macaca mulatta - virology Macrophages Macrophages, Alveolar - metabolism Medicine Medicine and Health Sciences Middle East Respiratory Syndrome Coronavirus Pathogenesis Pathological histology Pathology Pneumocytes Pneumonia Pulmonary lesions Research and Analysis Methods Respiratory diseases Ribonucleic acid Risk factors RNA RNA, Viral Rodents Species Specificity Viral infections Virus Replication Viruses Zoology |
title | Comparative pathology of rhesus macaque and common marmoset animal models with Middle East respiratory syndrome coronavirus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20pathology%20of%20rhesus%20macaque%20and%20common%20marmoset%20animal%20models%20with%20Middle%20East%20respiratory%20syndrome%20coronavirus&rft.jtitle=PloS%20one&rft.au=Yu,%20Pin&rft.date=2017-02-24&rft.volume=12&rft.issue=2&rft.spage=e0172093&rft.epage=e0172093&rft.pages=e0172093-e0172093&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0172093&rft_dat=%3Cgale_plos_%3EA482540606%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1871803083&rft_id=info:pmid/28234937&rft_galeid=A482540606&rft_doaj_id=oai_doaj_org_article_214eb7e0595841d8bf3883c7947e6215&rfr_iscdi=true |