Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae)
African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily t...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-01, Vol.12 (1), p.e0169644-e0169644 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0169644 |
---|---|
container_issue | 1 |
container_start_page | e0169644 |
container_title | PloS one |
container_volume | 12 |
creator | Haupt, Meghan Bennett, Nigel C Oosthuizen, Maria K |
description | African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment. |
doi_str_mv | 10.1371/journal.pone.0169644 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1871802862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477004724</galeid><doaj_id>oai_doaj_org_article_ebf29e314a4a45249d80f3ad44968d7e</doaj_id><sourcerecordid>A477004724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-c5db0e59c5aa5fc5cbab8fcd3b7880e19d8ef34bfeb24290720de935bdeef7c73</originalsourceid><addsrcrecordid>eNqNk1Fv0zAQxyMEYmPwDRBYQkLbQ4vj2LHzglQm2CoNDY3Bq-XYl9ZTEhfbqegn4Gvjsm5q0B6me7B1_t3_fGdflr3O8TQveP7hxg2-V-105XqY4rysSkqfZId5VZBJSXDxdG9_kL0I4QZjVoiyfJ4dEIE5ERQfZn8unHadi86jmY52beMGqd6gT85s0DV0K_AqDh7QNxUj-D4gtwaP1OjszCtjoY_I9iguAZ3bxXINrUFfXQuTKxXR8anfrKLrNgEtXRLqo4tDQCsPKbNVcPIye9aoNsCr3XqU_fjy-fr0fHJxeTY_nV1MNCcsTjQzNQZWaaYUazTTtapFo01RcyEw5JUR0BS0bqAmlFSpSmygKlhtABqueXGUvb3VXbUuyF0Pg8wFzwUmoiSJmN8SxqkbufK2U34jnbLyn8P5hVQ-Wt2ChLohFRQ5VckYoSk7bgplKK1KYTgkrY-7bEPdgdGpbq_akej4pLdLuXBryQihosyTwPFOwLtfA4QoOxs0tK3qwQ3be5eioHmyR6CMc5ZXnCX03X_ow43YUQuVarV949IV9VZUzijnGFNOtmmnD1DJDHRWp7_Z2OQfBZyMAhIT4XdcqCEEOf9-9Xj28ueYfb_HLkG1cRlcO0Tr-jAG6S2ovQvBQ3P_HjmW29G664bcjpbcjVYKe7P_lvdBd7NU_AU_JCEc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1871802862</pqid></control><display><type>article</type><title>Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae)</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>Free E-Journal (出版社公開部分のみ)</source><source>PubMed Central</source><source>Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Haupt, Meghan ; Bennett, Nigel C ; Oosthuizen, Maria K</creator><contributor>Mintz, Eric M.</contributor><creatorcontrib>Haupt, Meghan ; Bennett, Nigel C ; Oosthuizen, Maria K ; Mintz, Eric M.</creatorcontrib><description>African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0169644</identifier><identifier>PMID: 28072840</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Ambient temperature ; Analysis ; Animal behavior ; Animals ; Bathyergidae ; Behavior, Animal ; Biology and Life Sciences ; Body Temperature ; Body Temperature Regulation ; Body temperatures ; Burrows ; Circadian Rhythm ; Cryptomys hottentotus pretoriae ; Daily temperatures ; Earth Sciences ; Energy efficiency ; Evaporative cooling ; Gender differences ; High humidity ; Highveld mole-rat ; Humidity ; Laboratory animals ; Light ; Locomotion ; Locomotor activity ; Males ; Medicine and Health Sciences ; Mole Rats - physiology ; Nocturnal ; Photoperiod ; Physical Sciences ; Physiology ; Rats ; Rhythm ; Rodents ; Saccostomus campestris ; Soil ; Temperature ; Temperature changes ; Temperature effects ; Temperature fluctuations ; Temperature gradients ; Temperature patterns ; Thermoregulation ; Variation ; Zoology</subject><ispartof>PloS one, 2017-01, Vol.12 (1), p.e0169644-e0169644</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Haupt et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Haupt et al 2017 Haupt et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-c5db0e59c5aa5fc5cbab8fcd3b7880e19d8ef34bfeb24290720de935bdeef7c73</citedby><cites>FETCH-LOGICAL-c725t-c5db0e59c5aa5fc5cbab8fcd3b7880e19d8ef34bfeb24290720de935bdeef7c73</cites><orcidid>0000-0001-6305-8283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5224861/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5224861/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28072840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mintz, Eric M.</contributor><creatorcontrib>Haupt, Meghan</creatorcontrib><creatorcontrib>Bennett, Nigel C</creatorcontrib><creatorcontrib>Oosthuizen, Maria K</creatorcontrib><title>Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae)</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment.</description><subject>Adaptation</subject><subject>Ambient temperature</subject><subject>Analysis</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Bathyergidae</subject><subject>Behavior, Animal</subject><subject>Biology and Life Sciences</subject><subject>Body Temperature</subject><subject>Body Temperature Regulation</subject><subject>Body temperatures</subject><subject>Burrows</subject><subject>Circadian Rhythm</subject><subject>Cryptomys hottentotus pretoriae</subject><subject>Daily temperatures</subject><subject>Earth Sciences</subject><subject>Energy efficiency</subject><subject>Evaporative cooling</subject><subject>Gender differences</subject><subject>High humidity</subject><subject>Highveld mole-rat</subject><subject>Humidity</subject><subject>Laboratory animals</subject><subject>Light</subject><subject>Locomotion</subject><subject>Locomotor activity</subject><subject>Males</subject><subject>Medicine and Health Sciences</subject><subject>Mole Rats - physiology</subject><subject>Nocturnal</subject><subject>Photoperiod</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Rats</subject><subject>Rhythm</subject><subject>Rodents</subject><subject>Saccostomus campestris</subject><subject>Soil</subject><subject>Temperature</subject><subject>Temperature changes</subject><subject>Temperature effects</subject><subject>Temperature fluctuations</subject><subject>Temperature gradients</subject><subject>Temperature patterns</subject><subject>Thermoregulation</subject><subject>Variation</subject><subject>Zoology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1Fv0zAQxyMEYmPwDRBYQkLbQ4vj2LHzglQm2CoNDY3Bq-XYl9ZTEhfbqegn4Gvjsm5q0B6me7B1_t3_fGdflr3O8TQveP7hxg2-V-105XqY4rysSkqfZId5VZBJSXDxdG9_kL0I4QZjVoiyfJ4dEIE5ERQfZn8unHadi86jmY52beMGqd6gT85s0DV0K_AqDh7QNxUj-D4gtwaP1OjszCtjoY_I9iguAZ3bxXINrUFfXQuTKxXR8anfrKLrNgEtXRLqo4tDQCsPKbNVcPIye9aoNsCr3XqU_fjy-fr0fHJxeTY_nV1MNCcsTjQzNQZWaaYUazTTtapFo01RcyEw5JUR0BS0bqAmlFSpSmygKlhtABqueXGUvb3VXbUuyF0Pg8wFzwUmoiSJmN8SxqkbufK2U34jnbLyn8P5hVQ-Wt2ChLohFRQ5VckYoSk7bgplKK1KYTgkrY-7bEPdgdGpbq_akej4pLdLuXBryQihosyTwPFOwLtfA4QoOxs0tK3qwQ3be5eioHmyR6CMc5ZXnCX03X_ow43YUQuVarV949IV9VZUzijnGFNOtmmnD1DJDHRWp7_Z2OQfBZyMAhIT4XdcqCEEOf9-9Xj28ueYfb_HLkG1cRlcO0Tr-jAG6S2ovQvBQ3P_HjmW29G664bcjpbcjVYKe7P_lvdBd7NU_AU_JCEc</recordid><startdate>20170110</startdate><enddate>20170110</enddate><creator>Haupt, Meghan</creator><creator>Bennett, Nigel C</creator><creator>Oosthuizen, Maria K</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6305-8283</orcidid></search><sort><creationdate>20170110</creationdate><title>Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae)</title><author>Haupt, Meghan ; Bennett, Nigel C ; Oosthuizen, Maria K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-c5db0e59c5aa5fc5cbab8fcd3b7880e19d8ef34bfeb24290720de935bdeef7c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation</topic><topic>Ambient temperature</topic><topic>Analysis</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Bathyergidae</topic><topic>Behavior, Animal</topic><topic>Biology and Life Sciences</topic><topic>Body Temperature</topic><topic>Body Temperature Regulation</topic><topic>Body temperatures</topic><topic>Burrows</topic><topic>Circadian Rhythm</topic><topic>Cryptomys hottentotus pretoriae</topic><topic>Daily temperatures</topic><topic>Earth Sciences</topic><topic>Energy efficiency</topic><topic>Evaporative cooling</topic><topic>Gender differences</topic><topic>High humidity</topic><topic>Highveld mole-rat</topic><topic>Humidity</topic><topic>Laboratory animals</topic><topic>Light</topic><topic>Locomotion</topic><topic>Locomotor activity</topic><topic>Males</topic><topic>Medicine and Health Sciences</topic><topic>Mole Rats - physiology</topic><topic>Nocturnal</topic><topic>Photoperiod</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Rats</topic><topic>Rhythm</topic><topic>Rodents</topic><topic>Saccostomus campestris</topic><topic>Soil</topic><topic>Temperature</topic><topic>Temperature changes</topic><topic>Temperature effects</topic><topic>Temperature fluctuations</topic><topic>Temperature gradients</topic><topic>Temperature patterns</topic><topic>Thermoregulation</topic><topic>Variation</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haupt, Meghan</creatorcontrib><creatorcontrib>Bennett, Nigel C</creatorcontrib><creatorcontrib>Oosthuizen, Maria K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haupt, Meghan</au><au>Bennett, Nigel C</au><au>Oosthuizen, Maria K</au><au>Mintz, Eric M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae)</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-01-10</date><risdate>2017</risdate><volume>12</volume><issue>1</issue><spage>e0169644</spage><epage>e0169644</epage><pages>e0169644-e0169644</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28072840</pmid><doi>10.1371/journal.pone.0169644</doi><tpages>e0169644</tpages><orcidid>https://orcid.org/0000-0001-6305-8283</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-01, Vol.12 (1), p.e0169644-e0169644 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1871802862 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; Free E-Journal (出版社公開部分のみ); PubMed Central; Directory of Open Access Journals; Free Full-Text Journals in Chemistry |
subjects | Adaptation Ambient temperature Analysis Animal behavior Animals Bathyergidae Behavior, Animal Biology and Life Sciences Body Temperature Body Temperature Regulation Body temperatures Burrows Circadian Rhythm Cryptomys hottentotus pretoriae Daily temperatures Earth Sciences Energy efficiency Evaporative cooling Gender differences High humidity Highveld mole-rat Humidity Laboratory animals Light Locomotion Locomotor activity Males Medicine and Health Sciences Mole Rats - physiology Nocturnal Photoperiod Physical Sciences Physiology Rats Rhythm Rodents Saccostomus campestris Soil Temperature Temperature changes Temperature effects Temperature fluctuations Temperature gradients Temperature patterns Thermoregulation Variation Zoology |
title | Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locomotor%20Activity%20and%20Body%20Temperature%20Patterns%20over%20a%20Temperature%20Gradient%20in%20the%20Highveld%20Mole-Rat%20(Cryptomys%20hottentotus%20pretoriae)&rft.jtitle=PloS%20one&rft.au=Haupt,%20Meghan&rft.date=2017-01-10&rft.volume=12&rft.issue=1&rft.spage=e0169644&rft.epage=e0169644&rft.pages=e0169644-e0169644&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0169644&rft_dat=%3Cgale_plos_%3EA477004724%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1871802862&rft_id=info:pmid/28072840&rft_galeid=A477004724&rft_doaj_id=oai_doaj_org_article_ebf29e314a4a45249d80f3ad44968d7e&rfr_iscdi=true |