Re-wiring of energy metabolism promotes viability during hyperreplication stress in E. coli

Chromosome replication in Escherichia coli is initiated by DnaA. DnaA binds ATP which is essential for formation of a DnaA-oriC nucleoprotein complex that promotes strand opening, helicase loading and replisome assembly. Following initiation, DnaAATP is converted to DnaAADP primarily by the Regulato...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2017-01, Vol.13 (1), p.e1006590-e1006590
Hauptverfasser: Charbon, Godefroid, Campion, Christopher, Chan, Siu Hung Joshua, Bjørn, Louise, Weimann, Allan, da Silva, Luís Cláudio Nascimento, Jensen, Peter Ruhdal, Løbner-Olesen, Anders
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1006590
container_issue 1
container_start_page e1006590
container_title PLoS genetics
container_volume 13
creator Charbon, Godefroid
Campion, Christopher
Chan, Siu Hung Joshua
Bjørn, Louise
Weimann, Allan
da Silva, Luís Cláudio Nascimento
Jensen, Peter Ruhdal
Løbner-Olesen, Anders
description Chromosome replication in Escherichia coli is initiated by DnaA. DnaA binds ATP which is essential for formation of a DnaA-oriC nucleoprotein complex that promotes strand opening, helicase loading and replisome assembly. Following initiation, DnaAATP is converted to DnaAADP primarily by the Regulatory Inactivation of DnaA process (RIDA). In RIDA deficient cells, DnaAATP accumulates leading to uncontrolled initiation of replication and cell death by accumulation of DNA strand breaks. Mutations that suppress RIDA deficiency either dampen overinitiation or permit growth despite overinitiation. We characterize mutations of the last group that have in common that distinct metabolic routes are rewired resulting in the redirection of electron flow towards the cytochrome bd-1. We propose a model where cytochrome bd-1 lowers the formation of reactive oxygen species and hence oxidative damage to the DNA in general. This increases the processivity of replication forks generated by overinitiation to a level that sustains viability.
doi_str_mv 10.1371/journal.pgen.1006590
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1869527882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A493759336</galeid><doaj_id>oai_doaj_org_article_b0af3936219241299254d82ae0f013e3</doaj_id><sourcerecordid>A493759336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c825t-ef15a286595a20216cbcc438873a94136e7e492977a514fc44adfe7207a7a7313</originalsourceid><addsrcrecordid>eNqVk01v1DAQhiMEoqXwDxBEQkJw2MVfieMLUlUVWKmiUvm4cLC8ziTryolT2ynsv8fb3VYb1EORD7bs5309nvFk2UuM5phy_OHSjb5Xdj600M8xQmUh0KPsEBcFnXGG2OO99UH2LIRLhGhRCf40OyAVJoJScZj9uoDZb-NN3-auyaEH367zDqJaOmtClw_edS5CyK-NWhpr4jqvxxt8tR7Aexis0Soa1-chegghN31-Os91kj_PnjTKBnixm4-yH59Ov598mZ2df16cHJ_NdEWKOIMGF4pUKf40IYJLvdSa0ariVAmGaQkcmCCCc1Vg1mjGVN0AJ4irNCimR9nrre9gXZC7vASJq1IUhFcVScRiS9ROXcrBm075tXTKyJsN51upfDTaglwi1VBBS4IFYSlLghSsrogC1CBMgSavj7vbxmUHtYY-emUnptOT3qxk665lQRGpGEsG73YG3l2NEKLsTNBgrerBjZu4eapPxRF9AFoSXhKBUULf_IPen4gd1ar0VtM3LoWoN6bymAnKi_QrykTN76HSqKEz2vXQmLQ_EbyfCBIT4U9s1RiCXHy7-A_268PZ859T9u0euwJl4yo4O27-ZpiCbAtq70Lw0NzVDiO5aa3bzMlNa8ldayXZq_2634lue4n-BdNIG8k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1869527882</pqid></control><display><type>article</type><title>Re-wiring of energy metabolism promotes viability during hyperreplication stress in E. coli</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Charbon, Godefroid ; Campion, Christopher ; Chan, Siu Hung Joshua ; Bjørn, Louise ; Weimann, Allan ; da Silva, Luís Cláudio Nascimento ; Jensen, Peter Ruhdal ; Løbner-Olesen, Anders</creator><contributor>Walker, Graham C.</contributor><creatorcontrib>Charbon, Godefroid ; Campion, Christopher ; Chan, Siu Hung Joshua ; Bjørn, Louise ; Weimann, Allan ; da Silva, Luís Cláudio Nascimento ; Jensen, Peter Ruhdal ; Løbner-Olesen, Anders ; Walker, Graham C.</creatorcontrib><description>Chromosome replication in Escherichia coli is initiated by DnaA. DnaA binds ATP which is essential for formation of a DnaA-oriC nucleoprotein complex that promotes strand opening, helicase loading and replisome assembly. Following initiation, DnaAATP is converted to DnaAADP primarily by the Regulatory Inactivation of DnaA process (RIDA). In RIDA deficient cells, DnaAATP accumulates leading to uncontrolled initiation of replication and cell death by accumulation of DNA strand breaks. Mutations that suppress RIDA deficiency either dampen overinitiation or permit growth despite overinitiation. We characterize mutations of the last group that have in common that distinct metabolic routes are rewired resulting in the redirection of electron flow towards the cytochrome bd-1. We propose a model where cytochrome bd-1 lowers the formation of reactive oxygen species and hence oxidative damage to the DNA in general. This increases the processivity of replication forks generated by overinitiation to a level that sustains viability.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1006590</identifier><identifier>PMID: 28129339</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Apoptosis ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biology ; Biology and Life Sciences ; Cell cycle ; Chromosome replication ; Chromosomes ; Colleges &amp; universities ; Cytochrome ; Cytochromes - genetics ; Cytochromes - metabolism ; Deoxyribonucleic acid ; DNA ; DNA Replication ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; E coli ; Electron Transport Chain Complex Proteins - genetics ; Electron Transport Chain Complex Proteins - metabolism ; Energy Metabolism ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Funding ; Genetic aspects ; Genomics ; Glycerol ; Metabolism ; Mutation ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; Physical Sciences ; Physiological aspects ; Proteins ; Replication Origin ; Research and Analysis Methods ; Stress response ; Stress, Physiological</subject><ispartof>PLoS genetics, 2017-01, Vol.13 (1), p.e1006590-e1006590</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Genet 13(1): e1006590. doi:10.1371/journal.pgen.1006590</rights><rights>2017 Charbon et al 2017 Charbon et al</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Genet 13(1): e1006590. doi:10.1371/journal.pgen.1006590</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c825t-ef15a286595a20216cbcc438873a94136e7e492977a514fc44adfe7207a7a7313</citedby><cites>FETCH-LOGICAL-c825t-ef15a286595a20216cbcc438873a94136e7e492977a514fc44adfe7207a7a7313</cites><orcidid>0000-0002-4206-0904 ; 0000-0002-0344-6417 ; 0000-0002-5086-4582 ; 0000-0003-4792-1889 ; 0000-0003-2080-2070 ; 0000-0002-7707-656X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302844/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302844/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28129339$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Walker, Graham C.</contributor><creatorcontrib>Charbon, Godefroid</creatorcontrib><creatorcontrib>Campion, Christopher</creatorcontrib><creatorcontrib>Chan, Siu Hung Joshua</creatorcontrib><creatorcontrib>Bjørn, Louise</creatorcontrib><creatorcontrib>Weimann, Allan</creatorcontrib><creatorcontrib>da Silva, Luís Cláudio Nascimento</creatorcontrib><creatorcontrib>Jensen, Peter Ruhdal</creatorcontrib><creatorcontrib>Løbner-Olesen, Anders</creatorcontrib><title>Re-wiring of energy metabolism promotes viability during hyperreplication stress in E. coli</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Chromosome replication in Escherichia coli is initiated by DnaA. DnaA binds ATP which is essential for formation of a DnaA-oriC nucleoprotein complex that promotes strand opening, helicase loading and replisome assembly. Following initiation, DnaAATP is converted to DnaAADP primarily by the Regulatory Inactivation of DnaA process (RIDA). In RIDA deficient cells, DnaAATP accumulates leading to uncontrolled initiation of replication and cell death by accumulation of DNA strand breaks. Mutations that suppress RIDA deficiency either dampen overinitiation or permit growth despite overinitiation. We characterize mutations of the last group that have in common that distinct metabolic routes are rewired resulting in the redirection of electron flow towards the cytochrome bd-1. We propose a model where cytochrome bd-1 lowers the formation of reactive oxygen species and hence oxidative damage to the DNA in general. This increases the processivity of replication forks generated by overinitiation to a level that sustains viability.</description><subject>Apoptosis</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Cell cycle</subject><subject>Chromosome replication</subject><subject>Chromosomes</subject><subject>Colleges &amp; universities</subject><subject>Cytochrome</subject><subject>Cytochromes - genetics</subject><subject>Cytochromes - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Replication</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>E coli</subject><subject>Electron Transport Chain Complex Proteins - genetics</subject><subject>Electron Transport Chain Complex Proteins - metabolism</subject><subject>Energy Metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Funding</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Glycerol</subject><subject>Metabolism</subject><subject>Mutation</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Replication Origin</subject><subject>Research and Analysis Methods</subject><subject>Stress response</subject><subject>Stress, Physiological</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01v1DAQhiMEoqXwDxBEQkJw2MVfieMLUlUVWKmiUvm4cLC8ziTryolT2ynsv8fb3VYb1EORD7bs5309nvFk2UuM5phy_OHSjb5Xdj600M8xQmUh0KPsEBcFnXGG2OO99UH2LIRLhGhRCf40OyAVJoJScZj9uoDZb-NN3-auyaEH367zDqJaOmtClw_edS5CyK-NWhpr4jqvxxt8tR7Aexis0Soa1-chegghN31-Os91kj_PnjTKBnixm4-yH59Ov598mZ2df16cHJ_NdEWKOIMGF4pUKf40IYJLvdSa0ariVAmGaQkcmCCCc1Vg1mjGVN0AJ4irNCimR9nrre9gXZC7vASJq1IUhFcVScRiS9ROXcrBm075tXTKyJsN51upfDTaglwi1VBBS4IFYSlLghSsrogC1CBMgSavj7vbxmUHtYY-emUnptOT3qxk665lQRGpGEsG73YG3l2NEKLsTNBgrerBjZu4eapPxRF9AFoSXhKBUULf_IPen4gd1ar0VtM3LoWoN6bymAnKi_QrykTN76HSqKEz2vXQmLQ_EbyfCBIT4U9s1RiCXHy7-A_268PZ859T9u0euwJl4yo4O27-ZpiCbAtq70Lw0NzVDiO5aa3bzMlNa8ldayXZq_2634lue4n-BdNIG8k</recordid><startdate>20170127</startdate><enddate>20170127</enddate><creator>Charbon, Godefroid</creator><creator>Campion, Christopher</creator><creator>Chan, Siu Hung Joshua</creator><creator>Bjørn, Louise</creator><creator>Weimann, Allan</creator><creator>da Silva, Luís Cláudio Nascimento</creator><creator>Jensen, Peter Ruhdal</creator><creator>Løbner-Olesen, Anders</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4206-0904</orcidid><orcidid>https://orcid.org/0000-0002-0344-6417</orcidid><orcidid>https://orcid.org/0000-0002-5086-4582</orcidid><orcidid>https://orcid.org/0000-0003-4792-1889</orcidid><orcidid>https://orcid.org/0000-0003-2080-2070</orcidid><orcidid>https://orcid.org/0000-0002-7707-656X</orcidid></search><sort><creationdate>20170127</creationdate><title>Re-wiring of energy metabolism promotes viability during hyperreplication stress in E. coli</title><author>Charbon, Godefroid ; Campion, Christopher ; Chan, Siu Hung Joshua ; Bjørn, Louise ; Weimann, Allan ; da Silva, Luís Cláudio Nascimento ; Jensen, Peter Ruhdal ; Løbner-Olesen, Anders</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c825t-ef15a286595a20216cbcc438873a94136e7e492977a514fc44adfe7207a7a7313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Apoptosis</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Cell cycle</topic><topic>Chromosome replication</topic><topic>Chromosomes</topic><topic>Colleges &amp; universities</topic><topic>Cytochrome</topic><topic>Cytochromes - genetics</topic><topic>Cytochromes - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Replication</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>E coli</topic><topic>Electron Transport Chain Complex Proteins - genetics</topic><topic>Electron Transport Chain Complex Proteins - metabolism</topic><topic>Energy Metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Funding</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Glycerol</topic><topic>Metabolism</topic><topic>Mutation</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Replication Origin</topic><topic>Research and Analysis Methods</topic><topic>Stress response</topic><topic>Stress, Physiological</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charbon, Godefroid</creatorcontrib><creatorcontrib>Campion, Christopher</creatorcontrib><creatorcontrib>Chan, Siu Hung Joshua</creatorcontrib><creatorcontrib>Bjørn, Louise</creatorcontrib><creatorcontrib>Weimann, Allan</creatorcontrib><creatorcontrib>da Silva, Luís Cláudio Nascimento</creatorcontrib><creatorcontrib>Jensen, Peter Ruhdal</creatorcontrib><creatorcontrib>Løbner-Olesen, Anders</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charbon, Godefroid</au><au>Campion, Christopher</au><au>Chan, Siu Hung Joshua</au><au>Bjørn, Louise</au><au>Weimann, Allan</au><au>da Silva, Luís Cláudio Nascimento</au><au>Jensen, Peter Ruhdal</au><au>Løbner-Olesen, Anders</au><au>Walker, Graham C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Re-wiring of energy metabolism promotes viability during hyperreplication stress in E. coli</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2017-01-27</date><risdate>2017</risdate><volume>13</volume><issue>1</issue><spage>e1006590</spage><epage>e1006590</epage><pages>e1006590-e1006590</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Chromosome replication in Escherichia coli is initiated by DnaA. DnaA binds ATP which is essential for formation of a DnaA-oriC nucleoprotein complex that promotes strand opening, helicase loading and replisome assembly. Following initiation, DnaAATP is converted to DnaAADP primarily by the Regulatory Inactivation of DnaA process (RIDA). In RIDA deficient cells, DnaAATP accumulates leading to uncontrolled initiation of replication and cell death by accumulation of DNA strand breaks. Mutations that suppress RIDA deficiency either dampen overinitiation or permit growth despite overinitiation. We characterize mutations of the last group that have in common that distinct metabolic routes are rewired resulting in the redirection of electron flow towards the cytochrome bd-1. We propose a model where cytochrome bd-1 lowers the formation of reactive oxygen species and hence oxidative damage to the DNA in general. This increases the processivity of replication forks generated by overinitiation to a level that sustains viability.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28129339</pmid><doi>10.1371/journal.pgen.1006590</doi><orcidid>https://orcid.org/0000-0002-4206-0904</orcidid><orcidid>https://orcid.org/0000-0002-0344-6417</orcidid><orcidid>https://orcid.org/0000-0002-5086-4582</orcidid><orcidid>https://orcid.org/0000-0003-4792-1889</orcidid><orcidid>https://orcid.org/0000-0003-2080-2070</orcidid><orcidid>https://orcid.org/0000-0002-7707-656X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2017-01, Vol.13 (1), p.e1006590-e1006590
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1869527882
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Apoptosis
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biology
Biology and Life Sciences
Cell cycle
Chromosome replication
Chromosomes
Colleges & universities
Cytochrome
Cytochromes - genetics
Cytochromes - metabolism
Deoxyribonucleic acid
DNA
DNA Replication
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
E coli
Electron Transport Chain Complex Proteins - genetics
Electron Transport Chain Complex Proteins - metabolism
Energy Metabolism
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Funding
Genetic aspects
Genomics
Glycerol
Metabolism
Mutation
Oxidoreductases - genetics
Oxidoreductases - metabolism
Physical Sciences
Physiological aspects
Proteins
Replication Origin
Research and Analysis Methods
Stress response
Stress, Physiological
title Re-wiring of energy metabolism promotes viability during hyperreplication stress in E. coli
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A24%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Re-wiring%20of%20energy%20metabolism%20promotes%20viability%20during%20hyperreplication%20stress%20in%20E.%20coli&rft.jtitle=PLoS%20genetics&rft.au=Charbon,%20Godefroid&rft.date=2017-01-27&rft.volume=13&rft.issue=1&rft.spage=e1006590&rft.epage=e1006590&rft.pages=e1006590-e1006590&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1006590&rft_dat=%3Cgale_plos_%3EA493759336%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1869527882&rft_id=info:pmid/28129339&rft_galeid=A493759336&rft_doaj_id=oai_doaj_org_article_b0af3936219241299254d82ae0f013e3&rfr_iscdi=true