A General Shear-Dependent Model for Thrombus Formation

Modeling the transport, activation, and adhesion of platelets is crucial in predicting thrombus formation and growth following a thrombotic event in normal or pathological conditions. We propose a shear-dependent platelet adhesive model based on the Morse potential that is calibrated by existing in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2017-01, Vol.13 (1), p.e1005291
Hauptverfasser: Yazdani, Alireza, Li, He, Humphrey, Jay D, Karniadakis, George Em
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page e1005291
container_title PLoS computational biology
container_volume 13
creator Yazdani, Alireza
Li, He
Humphrey, Jay D
Karniadakis, George Em
description Modeling the transport, activation, and adhesion of platelets is crucial in predicting thrombus formation and growth following a thrombotic event in normal or pathological conditions. We propose a shear-dependent platelet adhesive model based on the Morse potential that is calibrated by existing in vivo and in vitro experimental data and can be used over a wide range of flow shear rates ([Formula: see text]). We introduce an Eulerian-Lagrangian model where hemodynamics is solved on a fixed Eulerian grid, while platelets are tracked using a Lagrangian framework. A force coupling method is introduced for bidirectional coupling of platelet motion with blood flow. Further, we couple the calibrated platelet aggregation model with a tissue-factor/contact pathway coagulation cascade, representing the relevant biology of thrombin generation and the subsequent fibrin deposition. The range of shear rates covered by the proposed model encompass venous and arterial thrombosis, ranging from low-shear-rate conditions in abdominal aortic aneurysms and thoracic aortic dissections to thrombosis in stenotic arteries following plaque rupture, where local shear rates are extremely high.
doi_str_mv 10.1371/journal.pcbi.1005291
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1869001819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A493714098</galeid><doaj_id>oai_doaj_org_article_90f3c3d4e9e24ba2805111ae3d45cd5a</doaj_id><sourcerecordid>A493714098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c628t-47bd65d006b0708629f555f9fb8f77a58bff65bfa461ac9a67f8c91c04a689af3</originalsourceid><addsrcrecordid>eNqVksFu1DAQhi0EoqXlDRBE4sQhWzuxHfuCtCptWakFqS1na-LYu14l8dZOEH17XDatGgkOyAdb429-z_wehN4RvCBlRU62fgw9tIudrt2CYMwKSV6gQ8JYmVclEy-fnQ_Qmxi3GKej5K_RQSGwZBQXh4gvswvTmwBtdrMxEPIvZmf6xvRDduUb02bWh-x2E3xXjzE796GDwfn-GL2y0EbzdtqP0I_zs9vTr_nl94vV6fIy17wQQ06ruuGswZjXuMKCF9Iyxqy0tbBVBUzU1nJWW6CcgJbAKyu0JBpT4EKCLY_Qh73urvVRTS1HRQSXGBNBZCJWe6LxsFW74DoI98qDU38CPqwVhMHp1iiJbanLhhppClpDMoERQsCkENMNg6T1eXptrDvT6ORCMmYmOr_p3Uat_U_FCoplQZPAx0kg-LvRxOEfJU_UGlJVrrc-ienORa2WVKa_TWIiUYu_UGk1pnPa98a6FJ8lfJolJGYwv4Y1jDGq1c31f7Df5izdszr4GIOxT4YQrB5G8bFJ9TCKahrFlPb-uZlPSY-zV_4GFP3YWA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1869001819</pqid></control><display><type>article</type><title>A General Shear-Dependent Model for Thrombus Formation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Yazdani, Alireza ; Li, He ; Humphrey, Jay D ; Karniadakis, George Em</creator><contributor>Diamond, Scott L</contributor><creatorcontrib>Yazdani, Alireza ; Li, He ; Humphrey, Jay D ; Karniadakis, George Em ; Diamond, Scott L</creatorcontrib><description>Modeling the transport, activation, and adhesion of platelets is crucial in predicting thrombus formation and growth following a thrombotic event in normal or pathological conditions. We propose a shear-dependent platelet adhesive model based on the Morse potential that is calibrated by existing in vivo and in vitro experimental data and can be used over a wide range of flow shear rates ([Formula: see text]). We introduce an Eulerian-Lagrangian model where hemodynamics is solved on a fixed Eulerian grid, while platelets are tracked using a Lagrangian framework. A force coupling method is introduced for bidirectional coupling of platelet motion with blood flow. Further, we couple the calibrated platelet aggregation model with a tissue-factor/contact pathway coagulation cascade, representing the relevant biology of thrombin generation and the subsequent fibrin deposition. The range of shear rates covered by the proposed model encompass venous and arterial thrombosis, ranging from low-shear-rate conditions in abdominal aortic aneurysms and thoracic aortic dissections to thrombosis in stenotic arteries following plaque rupture, where local shear rates are extremely high.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1005291</identifier><identifier>PMID: 28095402</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adhesion ; Adhesives ; Aneurysms ; Animals ; Applied mathematics ; Binding sites ; Biology and Life Sciences ; Blood clots ; Blood Coagulation - physiology ; Blood Flow Velocity - physiology ; Blood platelets ; Blood Pressure - physiology ; Boundary conditions ; Computer Simulation ; Enzymes ; Experiments ; Extracellular matrix ; Hemodynamics ; Humans ; Lagrangian functions ; Mathematical models ; Mathematics ; Medicine and Health Sciences ; Models, Cardiovascular ; Neural circuitry ; Physical Sciences ; Physiological aspects ; Platelet Adhesiveness - physiology ; Platelet Aggregation - physiology ; Thrombosis ; Thrombosis - blood ; Thrombosis - pathology ; Thrombosis - physiopathology ; Veins &amp; arteries</subject><ispartof>PLoS computational biology, 2017-01, Vol.13 (1), p.e1005291</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Yazdani A, Li H, Humphrey JD, Karniadakis GE (2017) A General Shear-Dependent Model for Thrombus Formation. PLoS Comput Biol 13(1): e1005291. doi:10.1371/journal.pcbi.1005291</rights><rights>2017 Yazdani et al 2017 Yazdani et al</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Yazdani A, Li H, Humphrey JD, Karniadakis GE (2017) A General Shear-Dependent Model for Thrombus Formation. PLoS Comput Biol 13(1): e1005291. doi:10.1371/journal.pcbi.1005291</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c628t-47bd65d006b0708629f555f9fb8f77a58bff65bfa461ac9a67f8c91c04a689af3</citedby><cites>FETCH-LOGICAL-c628t-47bd65d006b0708629f555f9fb8f77a58bff65bfa461ac9a67f8c91c04a689af3</cites><orcidid>0000-0002-9713-7120 ; 0000-0002-0139-2080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240924/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240924/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28095402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Diamond, Scott L</contributor><creatorcontrib>Yazdani, Alireza</creatorcontrib><creatorcontrib>Li, He</creatorcontrib><creatorcontrib>Humphrey, Jay D</creatorcontrib><creatorcontrib>Karniadakis, George Em</creatorcontrib><title>A General Shear-Dependent Model for Thrombus Formation</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Modeling the transport, activation, and adhesion of platelets is crucial in predicting thrombus formation and growth following a thrombotic event in normal or pathological conditions. We propose a shear-dependent platelet adhesive model based on the Morse potential that is calibrated by existing in vivo and in vitro experimental data and can be used over a wide range of flow shear rates ([Formula: see text]). We introduce an Eulerian-Lagrangian model where hemodynamics is solved on a fixed Eulerian grid, while platelets are tracked using a Lagrangian framework. A force coupling method is introduced for bidirectional coupling of platelet motion with blood flow. Further, we couple the calibrated platelet aggregation model with a tissue-factor/contact pathway coagulation cascade, representing the relevant biology of thrombin generation and the subsequent fibrin deposition. The range of shear rates covered by the proposed model encompass venous and arterial thrombosis, ranging from low-shear-rate conditions in abdominal aortic aneurysms and thoracic aortic dissections to thrombosis in stenotic arteries following plaque rupture, where local shear rates are extremely high.</description><subject>Adhesion</subject><subject>Adhesives</subject><subject>Aneurysms</subject><subject>Animals</subject><subject>Applied mathematics</subject><subject>Binding sites</subject><subject>Biology and Life Sciences</subject><subject>Blood clots</subject><subject>Blood Coagulation - physiology</subject><subject>Blood Flow Velocity - physiology</subject><subject>Blood platelets</subject><subject>Blood Pressure - physiology</subject><subject>Boundary conditions</subject><subject>Computer Simulation</subject><subject>Enzymes</subject><subject>Experiments</subject><subject>Extracellular matrix</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Lagrangian functions</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Medicine and Health Sciences</subject><subject>Models, Cardiovascular</subject><subject>Neural circuitry</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Platelet Adhesiveness - physiology</subject><subject>Platelet Aggregation - physiology</subject><subject>Thrombosis</subject><subject>Thrombosis - blood</subject><subject>Thrombosis - pathology</subject><subject>Thrombosis - physiopathology</subject><subject>Veins &amp; arteries</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVksFu1DAQhi0EoqXlDRBE4sQhWzuxHfuCtCptWakFqS1na-LYu14l8dZOEH17XDatGgkOyAdb429-z_wehN4RvCBlRU62fgw9tIudrt2CYMwKSV6gQ8JYmVclEy-fnQ_Qmxi3GKej5K_RQSGwZBQXh4gvswvTmwBtdrMxEPIvZmf6xvRDduUb02bWh-x2E3xXjzE796GDwfn-GL2y0EbzdtqP0I_zs9vTr_nl94vV6fIy17wQQ06ruuGswZjXuMKCF9Iyxqy0tbBVBUzU1nJWW6CcgJbAKyu0JBpT4EKCLY_Qh73urvVRTS1HRQSXGBNBZCJWe6LxsFW74DoI98qDU38CPqwVhMHp1iiJbanLhhppClpDMoERQsCkENMNg6T1eXptrDvT6ORCMmYmOr_p3Uat_U_FCoplQZPAx0kg-LvRxOEfJU_UGlJVrrc-ienORa2WVKa_TWIiUYu_UGk1pnPa98a6FJ8lfJolJGYwv4Y1jDGq1c31f7Df5izdszr4GIOxT4YQrB5G8bFJ9TCKahrFlPb-uZlPSY-zV_4GFP3YWA</recordid><startdate>20170117</startdate><enddate>20170117</enddate><creator>Yazdani, Alireza</creator><creator>Li, He</creator><creator>Humphrey, Jay D</creator><creator>Karniadakis, George Em</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9713-7120</orcidid><orcidid>https://orcid.org/0000-0002-0139-2080</orcidid></search><sort><creationdate>20170117</creationdate><title>A General Shear-Dependent Model for Thrombus Formation</title><author>Yazdani, Alireza ; Li, He ; Humphrey, Jay D ; Karniadakis, George Em</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c628t-47bd65d006b0708629f555f9fb8f77a58bff65bfa461ac9a67f8c91c04a689af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adhesion</topic><topic>Adhesives</topic><topic>Aneurysms</topic><topic>Animals</topic><topic>Applied mathematics</topic><topic>Binding sites</topic><topic>Biology and Life Sciences</topic><topic>Blood clots</topic><topic>Blood Coagulation - physiology</topic><topic>Blood Flow Velocity - physiology</topic><topic>Blood platelets</topic><topic>Blood Pressure - physiology</topic><topic>Boundary conditions</topic><topic>Computer Simulation</topic><topic>Enzymes</topic><topic>Experiments</topic><topic>Extracellular matrix</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Lagrangian functions</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Medicine and Health Sciences</topic><topic>Models, Cardiovascular</topic><topic>Neural circuitry</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Platelet Adhesiveness - physiology</topic><topic>Platelet Aggregation - physiology</topic><topic>Thrombosis</topic><topic>Thrombosis - blood</topic><topic>Thrombosis - pathology</topic><topic>Thrombosis - physiopathology</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yazdani, Alireza</creatorcontrib><creatorcontrib>Li, He</creatorcontrib><creatorcontrib>Humphrey, Jay D</creatorcontrib><creatorcontrib>Karniadakis, George Em</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yazdani, Alireza</au><au>Li, He</au><au>Humphrey, Jay D</au><au>Karniadakis, George Em</au><au>Diamond, Scott L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Shear-Dependent Model for Thrombus Formation</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2017-01-17</date><risdate>2017</risdate><volume>13</volume><issue>1</issue><spage>e1005291</spage><pages>e1005291-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Modeling the transport, activation, and adhesion of platelets is crucial in predicting thrombus formation and growth following a thrombotic event in normal or pathological conditions. We propose a shear-dependent platelet adhesive model based on the Morse potential that is calibrated by existing in vivo and in vitro experimental data and can be used over a wide range of flow shear rates ([Formula: see text]). We introduce an Eulerian-Lagrangian model where hemodynamics is solved on a fixed Eulerian grid, while platelets are tracked using a Lagrangian framework. A force coupling method is introduced for bidirectional coupling of platelet motion with blood flow. Further, we couple the calibrated platelet aggregation model with a tissue-factor/contact pathway coagulation cascade, representing the relevant biology of thrombin generation and the subsequent fibrin deposition. The range of shear rates covered by the proposed model encompass venous and arterial thrombosis, ranging from low-shear-rate conditions in abdominal aortic aneurysms and thoracic aortic dissections to thrombosis in stenotic arteries following plaque rupture, where local shear rates are extremely high.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28095402</pmid><doi>10.1371/journal.pcbi.1005291</doi><orcidid>https://orcid.org/0000-0002-9713-7120</orcidid><orcidid>https://orcid.org/0000-0002-0139-2080</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2017-01, Vol.13 (1), p.e1005291
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1869001819
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adhesion
Adhesives
Aneurysms
Animals
Applied mathematics
Binding sites
Biology and Life Sciences
Blood clots
Blood Coagulation - physiology
Blood Flow Velocity - physiology
Blood platelets
Blood Pressure - physiology
Boundary conditions
Computer Simulation
Enzymes
Experiments
Extracellular matrix
Hemodynamics
Humans
Lagrangian functions
Mathematical models
Mathematics
Medicine and Health Sciences
Models, Cardiovascular
Neural circuitry
Physical Sciences
Physiological aspects
Platelet Adhesiveness - physiology
Platelet Aggregation - physiology
Thrombosis
Thrombosis - blood
Thrombosis - pathology
Thrombosis - physiopathology
Veins & arteries
title A General Shear-Dependent Model for Thrombus Formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Shear-Dependent%20Model%20for%20Thrombus%20Formation&rft.jtitle=PLoS%20computational%20biology&rft.au=Yazdani,%20Alireza&rft.date=2017-01-17&rft.volume=13&rft.issue=1&rft.spage=e1005291&rft.pages=e1005291-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1005291&rft_dat=%3Cgale_plos_%3EA493714098%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1869001819&rft_id=info:pmid/28095402&rft_galeid=A493714098&rft_doaj_id=oai_doaj_org_article_90f3c3d4e9e24ba2805111ae3d45cd5a&rfr_iscdi=true