MicroRNAs, miR-23a-3p and miR-151-3p, Are Regulated in Dentate Gyrus Neuropil following Induction of Long-Term Potentiation In Vivo
Translation of synaptic mRNA contributes to alterations in the proteome necessary to consolidate long-term potentiation (LTP), a model of memory processes. Yet, how this process is controlled is not fully resolved. MicroRNAs are non-coding RNAs that negatively regulate gene expression by suppressing...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-01, Vol.12 (1), p.e0170407-e0170407 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0170407 |
---|---|
container_issue | 1 |
container_start_page | e0170407 |
container_title | PloS one |
container_volume | 12 |
creator | Ryan, Brigid Logan, Barbara J Abraham, Wickliffe C Williams, Joanna M |
description | Translation of synaptic mRNA contributes to alterations in the proteome necessary to consolidate long-term potentiation (LTP), a model of memory processes. Yet, how this process is controlled is not fully resolved. MicroRNAs are non-coding RNAs that negatively regulate gene expression by suppressing translation or promoting mRNA degradation. As specific microRNAs are synaptically located, we hypothesized that they are ideally suited to couple synaptic activation, translational regulation, and LTP persistence. The aim of this study was to identify LTP-regulated microRNAs at or near synapses. Accordingly, LTP was induced unilaterally at perforant path-dentate gyrus synapses in awake adult Sprague-Dawley rats. Five hours later, dentate gyrus middle molecular layer neuropil, containing potentiated synapses, was laser-microdissected. MicroRNA expression profiling, using TaqMan Low Density MicroRNA Microarrays (n = 4), identified eight regulated microRNAs. Subsequent individual TaqMan assays confirmed upregulation of miR-23a-3p (1.30 ± 0.10; p = 0.015) and miR-151-3p (1.17 ± 0.19; p = 0.045) in a second cohort (n = 7). Interestingly, bioinformatic analysis indicated that miR-151-3p and miR-23a-3p regulate synaptic reorganisation and transcription, respectively. In summary, we have demonstrated for the first time that microRNAs are regulated in isolated neuropil following LTP induction in vivo, supporting the hypothesis that synaptic, LTP-responsive microRNAs contribute to LTP persistence via regulation of the synaptic proteome. |
doi_str_mv | 10.1371/journal.pone.0170407 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1862133135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A479045540</galeid><doaj_id>oai_doaj_org_article_e371dc051417451fab0cdd7cac7b483f</doaj_id><sourcerecordid>A479045540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-cf5238703c9bd7956a184ec4a163f9918a75e1428c0076b6b9af04c37abb25563</originalsourceid><addsrcrecordid>eNqNk1tv0zAYhiMEYqPwDxBYQkIgLcWO7Ti5QaoGjEplQ2Xs1nIcJ3Xl2MVOBrvmj-MeNrVoF0su4sPzvrG_Q5K8RHCMMEMflm7wVpjxylk1hohBAtmj5BiVOEvzDOLHe-Oj5FkISwgpLvL8aXKUFSijOSLHyd9vWno3P5-EE9DpeZphkeIVELbeTBFFcXoCJl6BuWoHI3pVA23BJ2X7OAZnN34I4FwN3q20AY0zxv3WtgVTWw-y184C14CZs216qXwHvrs-KrXY7EwtuNLX7nnypBEmqBe77yj5-eXz5enXdHZxNj2dzFLJMtqnsqEZLhjEsqxqVtJcoIIoSQTKcVOWqBCMKkSyQkLI8iqvStFAIjETVZVRmuNR8nrruzIu8F38AkdFniGMEaaRmG6J2oklX3ndCX_DndB8s-B8y4XvtTSKq5iDWkKKCGKEokZUUNY1k0KyihS4iV4fd38bqk7VMl7bC3Ngerhj9YK37prTLC9ITN0oebcz8O7XoELPOx2kMkZY5YbNuQscM0nIQ1C6fiCO6Jv_0PsDsaNaEe-qbePiEeXalE8IKyGhlMBIje-h4lurTstYl42O6weC9weCyPTqT9-KIQQ-_TF_OHtxdci-3WMXSph-EZwZ1lUWDkGyBWPRh-BVc5cPBPm6rW6jwddtxXdtFWWv9nN5J7rtI_wP73sZyA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862133135</pqid></control><display><type>article</type><title>MicroRNAs, miR-23a-3p and miR-151-3p, Are Regulated in Dentate Gyrus Neuropil following Induction of Long-Term Potentiation In Vivo</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ryan, Brigid ; Logan, Barbara J ; Abraham, Wickliffe C ; Williams, Joanna M</creator><contributor>Ginsberg, Stephen D</contributor><creatorcontrib>Ryan, Brigid ; Logan, Barbara J ; Abraham, Wickliffe C ; Williams, Joanna M ; Ginsberg, Stephen D</creatorcontrib><description>Translation of synaptic mRNA contributes to alterations in the proteome necessary to consolidate long-term potentiation (LTP), a model of memory processes. Yet, how this process is controlled is not fully resolved. MicroRNAs are non-coding RNAs that negatively regulate gene expression by suppressing translation or promoting mRNA degradation. As specific microRNAs are synaptically located, we hypothesized that they are ideally suited to couple synaptic activation, translational regulation, and LTP persistence. The aim of this study was to identify LTP-regulated microRNAs at or near synapses. Accordingly, LTP was induced unilaterally at perforant path-dentate gyrus synapses in awake adult Sprague-Dawley rats. Five hours later, dentate gyrus middle molecular layer neuropil, containing potentiated synapses, was laser-microdissected. MicroRNA expression profiling, using TaqMan Low Density MicroRNA Microarrays (n = 4), identified eight regulated microRNAs. Subsequent individual TaqMan assays confirmed upregulation of miR-23a-3p (1.30 ± 0.10; p = 0.015) and miR-151-3p (1.17 ± 0.19; p = 0.045) in a second cohort (n = 7). Interestingly, bioinformatic analysis indicated that miR-151-3p and miR-23a-3p regulate synaptic reorganisation and transcription, respectively. In summary, we have demonstrated for the first time that microRNAs are regulated in isolated neuropil following LTP induction in vivo, supporting the hypothesis that synaptic, LTP-responsive microRNAs contribute to LTP persistence via regulation of the synaptic proteome.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0170407</identifier><identifier>PMID: 28125614</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal control ; Animals ; Biology and life sciences ; Brain research ; Coding ; Consolidation ; Dentate gyrus ; Dentate Gyrus - metabolism ; DNA microarrays ; Gene expression ; Gene Expression Regulation ; Genes ; Genetic aspects ; Information storage ; Lasers ; Localization ; Long-term potentiation ; Long-Term Potentiation - physiology ; Male ; Medical research ; Medicine and Health Sciences ; MicroRNA ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Neuropil ; Neuropil - metabolism ; Neurosciences ; Non-coding RNA ; Proteins ; Proteomes ; Psychological aspects ; Rats ; Rats, Sprague-Dawley ; Ribonucleic acid ; RNA ; Rodents ; Synapses ; Synapses - metabolism ; Synaptic transmission ; Transcription ; Translation</subject><ispartof>PloS one, 2017-01, Vol.12 (1), p.e0170407-e0170407</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Ryan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Ryan et al 2017 Ryan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-cf5238703c9bd7956a184ec4a163f9918a75e1428c0076b6b9af04c37abb25563</citedby><cites>FETCH-LOGICAL-c725t-cf5238703c9bd7956a184ec4a163f9918a75e1428c0076b6b9af04c37abb25563</cites><orcidid>0000-0003-3936-2220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5268419/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5268419/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28125614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ginsberg, Stephen D</contributor><creatorcontrib>Ryan, Brigid</creatorcontrib><creatorcontrib>Logan, Barbara J</creatorcontrib><creatorcontrib>Abraham, Wickliffe C</creatorcontrib><creatorcontrib>Williams, Joanna M</creatorcontrib><title>MicroRNAs, miR-23a-3p and miR-151-3p, Are Regulated in Dentate Gyrus Neuropil following Induction of Long-Term Potentiation In Vivo</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Translation of synaptic mRNA contributes to alterations in the proteome necessary to consolidate long-term potentiation (LTP), a model of memory processes. Yet, how this process is controlled is not fully resolved. MicroRNAs are non-coding RNAs that negatively regulate gene expression by suppressing translation or promoting mRNA degradation. As specific microRNAs are synaptically located, we hypothesized that they are ideally suited to couple synaptic activation, translational regulation, and LTP persistence. The aim of this study was to identify LTP-regulated microRNAs at or near synapses. Accordingly, LTP was induced unilaterally at perforant path-dentate gyrus synapses in awake adult Sprague-Dawley rats. Five hours later, dentate gyrus middle molecular layer neuropil, containing potentiated synapses, was laser-microdissected. MicroRNA expression profiling, using TaqMan Low Density MicroRNA Microarrays (n = 4), identified eight regulated microRNAs. Subsequent individual TaqMan assays confirmed upregulation of miR-23a-3p (1.30 ± 0.10; p = 0.015) and miR-151-3p (1.17 ± 0.19; p = 0.045) in a second cohort (n = 7). Interestingly, bioinformatic analysis indicated that miR-151-3p and miR-23a-3p regulate synaptic reorganisation and transcription, respectively. In summary, we have demonstrated for the first time that microRNAs are regulated in isolated neuropil following LTP induction in vivo, supporting the hypothesis that synaptic, LTP-responsive microRNAs contribute to LTP persistence via regulation of the synaptic proteome.</description><subject>Animal control</subject><subject>Animals</subject><subject>Biology and life sciences</subject><subject>Brain research</subject><subject>Coding</subject><subject>Consolidation</subject><subject>Dentate gyrus</subject><subject>Dentate Gyrus - metabolism</subject><subject>DNA microarrays</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Information storage</subject><subject>Lasers</subject><subject>Localization</subject><subject>Long-term potentiation</subject><subject>Long-Term Potentiation - physiology</subject><subject>Male</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Neuropil</subject><subject>Neuropil - metabolism</subject><subject>Neurosciences</subject><subject>Non-coding RNA</subject><subject>Proteins</subject><subject>Proteomes</subject><subject>Psychological aspects</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Rodents</subject><subject>Synapses</subject><subject>Synapses - metabolism</subject><subject>Synaptic transmission</subject><subject>Transcription</subject><subject>Translation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1tv0zAYhiMEYqPwDxBYQkIgLcWO7Ti5QaoGjEplQ2Xs1nIcJ3Xl2MVOBrvmj-MeNrVoF0su4sPzvrG_Q5K8RHCMMEMflm7wVpjxylk1hohBAtmj5BiVOEvzDOLHe-Oj5FkISwgpLvL8aXKUFSijOSLHyd9vWno3P5-EE9DpeZphkeIVELbeTBFFcXoCJl6BuWoHI3pVA23BJ2X7OAZnN34I4FwN3q20AY0zxv3WtgVTWw-y184C14CZs216qXwHvrs-KrXY7EwtuNLX7nnypBEmqBe77yj5-eXz5enXdHZxNj2dzFLJMtqnsqEZLhjEsqxqVtJcoIIoSQTKcVOWqBCMKkSyQkLI8iqvStFAIjETVZVRmuNR8nrruzIu8F38AkdFniGMEaaRmG6J2oklX3ndCX_DndB8s-B8y4XvtTSKq5iDWkKKCGKEokZUUNY1k0KyihS4iV4fd38bqk7VMl7bC3Ngerhj9YK37prTLC9ITN0oebcz8O7XoELPOx2kMkZY5YbNuQscM0nIQ1C6fiCO6Jv_0PsDsaNaEe-qbePiEeXalE8IKyGhlMBIje-h4lurTstYl42O6weC9weCyPTqT9-KIQQ-_TF_OHtxdci-3WMXSph-EZwZ1lUWDkGyBWPRh-BVc5cPBPm6rW6jwddtxXdtFWWv9nN5J7rtI_wP73sZyA</recordid><startdate>20170126</startdate><enddate>20170126</enddate><creator>Ryan, Brigid</creator><creator>Logan, Barbara J</creator><creator>Abraham, Wickliffe C</creator><creator>Williams, Joanna M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3936-2220</orcidid></search><sort><creationdate>20170126</creationdate><title>MicroRNAs, miR-23a-3p and miR-151-3p, Are Regulated in Dentate Gyrus Neuropil following Induction of Long-Term Potentiation In Vivo</title><author>Ryan, Brigid ; Logan, Barbara J ; Abraham, Wickliffe C ; Williams, Joanna M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-cf5238703c9bd7956a184ec4a163f9918a75e1428c0076b6b9af04c37abb25563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animal control</topic><topic>Animals</topic><topic>Biology and life sciences</topic><topic>Brain research</topic><topic>Coding</topic><topic>Consolidation</topic><topic>Dentate gyrus</topic><topic>Dentate Gyrus - metabolism</topic><topic>DNA microarrays</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Information storage</topic><topic>Lasers</topic><topic>Localization</topic><topic>Long-term potentiation</topic><topic>Long-Term Potentiation - physiology</topic><topic>Male</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Neuropil</topic><topic>Neuropil - metabolism</topic><topic>Neurosciences</topic><topic>Non-coding RNA</topic><topic>Proteins</topic><topic>Proteomes</topic><topic>Psychological aspects</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Rodents</topic><topic>Synapses</topic><topic>Synapses - metabolism</topic><topic>Synaptic transmission</topic><topic>Transcription</topic><topic>Translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryan, Brigid</creatorcontrib><creatorcontrib>Logan, Barbara J</creatorcontrib><creatorcontrib>Abraham, Wickliffe C</creatorcontrib><creatorcontrib>Williams, Joanna M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryan, Brigid</au><au>Logan, Barbara J</au><au>Abraham, Wickliffe C</au><au>Williams, Joanna M</au><au>Ginsberg, Stephen D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNAs, miR-23a-3p and miR-151-3p, Are Regulated in Dentate Gyrus Neuropil following Induction of Long-Term Potentiation In Vivo</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-01-26</date><risdate>2017</risdate><volume>12</volume><issue>1</issue><spage>e0170407</spage><epage>e0170407</epage><pages>e0170407-e0170407</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Translation of synaptic mRNA contributes to alterations in the proteome necessary to consolidate long-term potentiation (LTP), a model of memory processes. Yet, how this process is controlled is not fully resolved. MicroRNAs are non-coding RNAs that negatively regulate gene expression by suppressing translation or promoting mRNA degradation. As specific microRNAs are synaptically located, we hypothesized that they are ideally suited to couple synaptic activation, translational regulation, and LTP persistence. The aim of this study was to identify LTP-regulated microRNAs at or near synapses. Accordingly, LTP was induced unilaterally at perforant path-dentate gyrus synapses in awake adult Sprague-Dawley rats. Five hours later, dentate gyrus middle molecular layer neuropil, containing potentiated synapses, was laser-microdissected. MicroRNA expression profiling, using TaqMan Low Density MicroRNA Microarrays (n = 4), identified eight regulated microRNAs. Subsequent individual TaqMan assays confirmed upregulation of miR-23a-3p (1.30 ± 0.10; p = 0.015) and miR-151-3p (1.17 ± 0.19; p = 0.045) in a second cohort (n = 7). Interestingly, bioinformatic analysis indicated that miR-151-3p and miR-23a-3p regulate synaptic reorganisation and transcription, respectively. In summary, we have demonstrated for the first time that microRNAs are regulated in isolated neuropil following LTP induction in vivo, supporting the hypothesis that synaptic, LTP-responsive microRNAs contribute to LTP persistence via regulation of the synaptic proteome.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28125614</pmid><doi>10.1371/journal.pone.0170407</doi><tpages>e0170407</tpages><orcidid>https://orcid.org/0000-0003-3936-2220</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-01, Vol.12 (1), p.e0170407-e0170407 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1862133135 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animal control Animals Biology and life sciences Brain research Coding Consolidation Dentate gyrus Dentate Gyrus - metabolism DNA microarrays Gene expression Gene Expression Regulation Genes Genetic aspects Information storage Lasers Localization Long-term potentiation Long-Term Potentiation - physiology Male Medical research Medicine and Health Sciences MicroRNA MicroRNAs MicroRNAs - genetics MicroRNAs - metabolism miRNA Neuropil Neuropil - metabolism Neurosciences Non-coding RNA Proteins Proteomes Psychological aspects Rats Rats, Sprague-Dawley Ribonucleic acid RNA Rodents Synapses Synapses - metabolism Synaptic transmission Transcription Translation |
title | MicroRNAs, miR-23a-3p and miR-151-3p, Are Regulated in Dentate Gyrus Neuropil following Induction of Long-Term Potentiation In Vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNAs,%20miR-23a-3p%20and%20miR-151-3p,%20Are%20Regulated%20in%20Dentate%20Gyrus%20Neuropil%20following%20Induction%20of%20Long-Term%20Potentiation%20In%20Vivo&rft.jtitle=PloS%20one&rft.au=Ryan,%20Brigid&rft.date=2017-01-26&rft.volume=12&rft.issue=1&rft.spage=e0170407&rft.epage=e0170407&rft.pages=e0170407-e0170407&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0170407&rft_dat=%3Cgale_plos_%3EA479045540%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862133135&rft_id=info:pmid/28125614&rft_galeid=A479045540&rft_doaj_id=oai_doaj_org_article_e371dc051417451fab0cdd7cac7b483f&rfr_iscdi=true |