RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas protein...
Gespeichert in:
Veröffentlicht in: | PloS one 2017, Vol.12 (1), p.e0170552-e0170552 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0170552 |
---|---|
container_issue | 1 |
container_start_page | e0170552 |
container_title | PloS one |
container_volume | 12 |
creator | Liu, Tina Y Iavarone, Anthony T Doudna, Jennifer A |
description | CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA) to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus) Type III-A Csm complex (TthCsm) with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA) by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag) of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD) nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA) during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography. |
doi_str_mv | 10.1371/journal.pone.0170552 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1861103807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bca95d28e5344ed99d022829cc19ce02</doaj_id><sourcerecordid>1861612963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-1d5cd467b35f45f63a9fa9334418c1edf717b4fd4645f62e0e32baaea45f48813</originalsourceid><addsrcrecordid>eNptUsmO1DAQjRCIWeAPEFjMhUsaL1nsy0itZos0AtTTXLhYjlPpTiuJg-0g9d_jkMxoBnEql-vVq6qnF0WvCF4RlpP3RzPaXrWrwfSwwiTHaUqfROdEMBpnFLOnD95n0YVzR4xTxrPseXRGOSEJE_w8-rn9ukaqr9CHEHfK7sE3_R6VJ6TQFrTpnW_86KFCuwPYbnTIT9EMh6YNye40ACqKIl6jzba4_b6NN8qh25Pz0L2IntWqdfByiZfRj08fd5sv8c23z8VmfRPrhDMfkyrVVZLlJUvrJK0zpkStBGNJQrgmUNU5ycukDpCpSgEDo6VSoEKacE7YZfRm5h1a4-Qii5OEZ4RgxnEeEMWMqIw6ysE2nbInaVQj_34Yu5fK-ka3IEutRFpRDmlYACohKkwpp0JrIjRgGriul2lj2UGlofdWtY9IH1f65iD35rdMaZoJygLB25nABGml040HfQhC96C9JBnNOZk2frdMsebXCM7LrnEa2lb1YMb5uIxQkU18V_9A_y9BMqO0Nc5ZqO83JlhOfrrrkpOf5OKn0Pb64bX3TXcGYn8AfPXGnw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861103807</pqid></control><display><type>article</type><title>RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Liu, Tina Y ; Iavarone, Anthony T ; Doudna, Jennifer A</creator><creatorcontrib>Liu, Tina Y ; Iavarone, Anthony T ; Doudna, Jennifer A ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA) to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus) Type III-A Csm complex (TthCsm) with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA) by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag) of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD) nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA) during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0170552</identifier><identifier>PMID: 28114398</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptive immunity ; Adaptive systems ; Archaea ; Bacteria ; BASIC BIOLOGICAL SCIENCES ; Binding ; Biology ; Biology and life sciences ; Catalysis ; Cleavage ; Clustered Regularly Interspaced Short Palindromic Repeats ; Complementarity ; CRISPR ; Crystallography ; Deoxyribonucleic acid ; DNA ; DNA, Bacterial - genetics ; DNA, Bacterial - metabolism ; DNA-directed RNA polymerase ; Double-stranded RNA ; E coli ; Electron microscopy ; Engineering and Technology ; Escherichia coli ; Genomes ; Genomics ; Histidine ; Immune system ; Immunity ; Mutation ; Nuclease ; Nucleic acids ; Nucleotide sequence ; Nucleotides ; Phages ; Plasmids ; Proteins ; Research and analysis methods ; Ribonucleic acid ; RNA ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; Science & Technology - Other Topics ; Single-stranded DNA ; Staphylococcus epidermidis ; Streptococcus thermophilus ; Thermophilic bacteria ; Thermus thermophilus ; Thermus thermophilus - genetics ; Transcription ; X-ray crystallography</subject><ispartof>PloS one, 2017, Vol.12 (1), p.e0170552-e0170552</ispartof><rights>2017 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Liu et al 2017 Liu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-1d5cd467b35f45f63a9fa9334418c1edf717b4fd4645f62e0e32baaea45f48813</citedby><cites>FETCH-LOGICAL-c483t-1d5cd467b35f45f63a9fa9334418c1edf717b4fd4645f62e0e32baaea45f48813</cites><orcidid>0000-0003-1297-7102 ; 0000000312977102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5256923/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5256923/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,4010,23845,27900,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28114398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1627817$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Tina Y</creatorcontrib><creatorcontrib>Iavarone, Anthony T</creatorcontrib><creatorcontrib>Doudna, Jennifer A</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA) to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus) Type III-A Csm complex (TthCsm) with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA) by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag) of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD) nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA) during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.</description><subject>Adaptive immunity</subject><subject>Adaptive systems</subject><subject>Archaea</subject><subject>Bacteria</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Binding</subject><subject>Biology</subject><subject>Biology and life sciences</subject><subject>Catalysis</subject><subject>Cleavage</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats</subject><subject>Complementarity</subject><subject>CRISPR</subject><subject>Crystallography</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA-directed RNA polymerase</subject><subject>Double-stranded RNA</subject><subject>E coli</subject><subject>Electron microscopy</subject><subject>Engineering and Technology</subject><subject>Escherichia coli</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Histidine</subject><subject>Immune system</subject><subject>Immunity</subject><subject>Mutation</subject><subject>Nuclease</subject><subject>Nucleic acids</subject><subject>Nucleotide sequence</subject><subject>Nucleotides</subject><subject>Phages</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Research and analysis methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>Science & Technology - Other Topics</subject><subject>Single-stranded DNA</subject><subject>Staphylococcus epidermidis</subject><subject>Streptococcus thermophilus</subject><subject>Thermophilic bacteria</subject><subject>Thermus thermophilus</subject><subject>Thermus thermophilus - genetics</subject><subject>Transcription</subject><subject>X-ray crystallography</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUsmO1DAQjRCIWeAPEFjMhUsaL1nsy0itZos0AtTTXLhYjlPpTiuJg-0g9d_jkMxoBnEql-vVq6qnF0WvCF4RlpP3RzPaXrWrwfSwwiTHaUqfROdEMBpnFLOnD95n0YVzR4xTxrPseXRGOSEJE_w8-rn9ukaqr9CHEHfK7sE3_R6VJ6TQFrTpnW_86KFCuwPYbnTIT9EMh6YNye40ACqKIl6jzba4_b6NN8qh25Pz0L2IntWqdfByiZfRj08fd5sv8c23z8VmfRPrhDMfkyrVVZLlJUvrJK0zpkStBGNJQrgmUNU5ycukDpCpSgEDo6VSoEKacE7YZfRm5h1a4-Qii5OEZ4RgxnEeEMWMqIw6ysE2nbInaVQj_34Yu5fK-ka3IEutRFpRDmlYACohKkwpp0JrIjRgGriul2lj2UGlofdWtY9IH1f65iD35rdMaZoJygLB25nABGml040HfQhC96C9JBnNOZk2frdMsebXCM7LrnEa2lb1YMb5uIxQkU18V_9A_y9BMqO0Nc5ZqO83JlhOfrrrkpOf5OKn0Pb64bX3TXcGYn8AfPXGnw</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Liu, Tina Y</creator><creator>Iavarone, Anthony T</creator><creator>Doudna, Jennifer A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1297-7102</orcidid><orcidid>https://orcid.org/0000000312977102</orcidid></search><sort><creationdate>2017</creationdate><title>RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System</title><author>Liu, Tina Y ; Iavarone, Anthony T ; Doudna, Jennifer A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-1d5cd467b35f45f63a9fa9334418c1edf717b4fd4645f62e0e32baaea45f48813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive immunity</topic><topic>Adaptive systems</topic><topic>Archaea</topic><topic>Bacteria</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Binding</topic><topic>Biology</topic><topic>Biology and life sciences</topic><topic>Catalysis</topic><topic>Cleavage</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats</topic><topic>Complementarity</topic><topic>CRISPR</topic><topic>Crystallography</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA-directed RNA polymerase</topic><topic>Double-stranded RNA</topic><topic>E coli</topic><topic>Electron microscopy</topic><topic>Engineering and Technology</topic><topic>Escherichia coli</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Histidine</topic><topic>Immune system</topic><topic>Immunity</topic><topic>Mutation</topic><topic>Nuclease</topic><topic>Nucleic acids</topic><topic>Nucleotide sequence</topic><topic>Nucleotides</topic><topic>Phages</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Research and analysis methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>Science & Technology - Other Topics</topic><topic>Single-stranded DNA</topic><topic>Staphylococcus epidermidis</topic><topic>Streptococcus thermophilus</topic><topic>Thermophilic bacteria</topic><topic>Thermus thermophilus</topic><topic>Thermus thermophilus - genetics</topic><topic>Transcription</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tina Y</creatorcontrib><creatorcontrib>Iavarone, Anthony T</creatorcontrib><creatorcontrib>Doudna, Jennifer A</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tina Y</au><au>Iavarone, Anthony T</au><au>Doudna, Jennifer A</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017</date><risdate>2017</risdate><volume>12</volume><issue>1</issue><spage>e0170552</spage><epage>e0170552</epage><pages>e0170552-e0170552</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA) to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus) Type III-A Csm complex (TthCsm) with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA) by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag) of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD) nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA) during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28114398</pmid><doi>10.1371/journal.pone.0170552</doi><orcidid>https://orcid.org/0000-0003-1297-7102</orcidid><orcidid>https://orcid.org/0000000312977102</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017, Vol.12 (1), p.e0170552-e0170552 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1861103807 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Adaptive immunity Adaptive systems Archaea Bacteria BASIC BIOLOGICAL SCIENCES Binding Biology Biology and life sciences Catalysis Cleavage Clustered Regularly Interspaced Short Palindromic Repeats Complementarity CRISPR Crystallography Deoxyribonucleic acid DNA DNA, Bacterial - genetics DNA, Bacterial - metabolism DNA-directed RNA polymerase Double-stranded RNA E coli Electron microscopy Engineering and Technology Escherichia coli Genomes Genomics Histidine Immune system Immunity Mutation Nuclease Nucleic acids Nucleotide sequence Nucleotides Phages Plasmids Proteins Research and analysis methods Ribonucleic acid RNA RNA, Bacterial - genetics RNA, Bacterial - metabolism Science & Technology - Other Topics Single-stranded DNA Staphylococcus epidermidis Streptococcus thermophilus Thermophilic bacteria Thermus thermophilus Thermus thermophilus - genetics Transcription X-ray crystallography |
title | RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNA%20and%20DNA%20Targeting%20by%20a%20Reconstituted%20Thermus%20thermophilus%20Type%20III-A%20CRISPR-Cas%20System&rft.jtitle=PloS%20one&rft.au=Liu,%20Tina%20Y&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2017&rft.volume=12&rft.issue=1&rft.spage=e0170552&rft.epage=e0170552&rft.pages=e0170552-e0170552&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0170552&rft_dat=%3Cproquest_plos_%3E1861612963%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1861103807&rft_id=info:pmid/28114398&rft_doaj_id=oai_doaj_org_article_bca95d28e5344ed99d022829cc19ce02&rfr_iscdi=true |