Development of a DIPG Orthotopic Model in Mice Using an Implantable Guide-Screw System
In this work we set to develop and to validate a new in vivo frameless orthotopic Diffuse Intrinsic Pontine Glioma (DIPG) model based in the implantation of a guide-screw system. It consisted of a guide-screw also called bolt, a Hamilton syringe with a 26-gauge needle and an insulin-like 15-gauge ne...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-01, Vol.12 (1), p.e0170501-e0170501 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0170501 |
---|---|
container_issue | 1 |
container_start_page | e0170501 |
container_title | PloS one |
container_volume | 12 |
creator | Marigil, Miguel Martinez-Velez, Naiara Domínguez, Pablo D Idoate, Miguel Angel Xipell, Enric Patiño-García, Ana Gonzalez-Huarriz, Marisol García-Moure, Marc Junier, Marie-Pierre Chneiweiss, Hervé El-Habr, Elías Diez-Valle, Ricardo Tejada-Solís, Sonia Alonso, Marta M |
description | In this work we set to develop and to validate a new in vivo frameless orthotopic Diffuse Intrinsic Pontine Glioma (DIPG) model based in the implantation of a guide-screw system.
It consisted of a guide-screw also called bolt, a Hamilton syringe with a 26-gauge needle and an insulin-like 15-gauge needle. The guide screw is 2.6 mm in length and harbors a 0.5 mm central hole which accepts the needle of the Hamilton syringe avoiding a theoretical displacement during insertion. The guide-screw is fixed on the mouse skull according to the coordinates: 1mm right to and 0.8 mm posterior to lambda. To reach the pons the Hamilton syringe is adjusted to a 6.5 mm depth using a cuff that serves as a stopper. This system allows delivering not only cells but also any kind of intratumoral chemotherapy, antibodies or gene/viral therapies.
The guide-screw was successfully implanted in 10 immunodeficient mice and the animals were inoculated with DIPG human cell lines during the same anesthetic period. All the mice developed severe neurologic symptoms and had a median overall survival of 95 days ranging the time of death from 81 to 116 days. Histopathological analysis confirmed tumor into the pons in all animals confirming the validity of this model.
Here we presented a reproducible and frameless DIPG model that allows for rapid evaluation of tumorigenicity and efficacy of chemotherapeutic or gene therapy products delivered intratumorally to the pons. |
doi_str_mv | 10.1371/journal.pone.0170501 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1860295629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478287129</galeid><doaj_id>oai_doaj_org_article_0b50579b43b343f89ca21719e5336c15</doaj_id><sourcerecordid>A478287129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c759t-d9da1fa72dcf13539f52943c377f4d01eae3f36f81c7b26a1138b983e037204d3</originalsourceid><addsrcrecordid>eNqNk1Fv0zAUhSMEYmPwDxBEQkLsocXXjuP4BanaoKvUqYiyvVqO47SukjjESWH_HrfNpmbaw5SHRNffOfY9zg2C94DGQBh83diuqWQxrm2lxwgYogheBKfACR7FGJGXR98nwRvnNghRksTx6-AEJ4BYRPhpcHupt7qwdamrNrR5KMPL2c9puGjatW1tbVR4bTNdhKYKr43S4Y0z1SqUVTgr60JWrUwLHU47k-nRUjX6b7i8c60u3wavclk4_a5_nwU3P77_vrgazRfT2cVkPlKM8naU8UxCLhnOVA6EEp5TzCOiCGN5lCHQUpOcxHkCiqU4lgAkSXlCNCIMoygjZ8HHg29dWCf6SJyAJEaY0xhzT8wORGblRtSNKWVzJ6w0Yl-wzUrIpjWq0AKlFFHG04ikJCJ5wpXEwIBrSkisgHqvb_1uXVrqTPnMGlkMTIcrlVmLld0KiiMOdHeY84PB-pHsajIXuxqCiCUUYAue_dJv1tg_nXatKI1TuvCpa9vte0wIYQnGz0GBJpFvxaOfHqFPh9ZTK-lzMVVufTtqZyom_oA4YbCnxk9Q_sl0aZT_LXPj6wPB-UDgmVb_a1eyc07Mlr-ezy5uh-znI3atZdGunS261tjKDcHoAKrGOtfo_OESAIndVN2nIXZTJfqp8rIPx_f-ILofI_IfLCUYTA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1860295629</pqid></control><display><type>article</type><title>Development of a DIPG Orthotopic Model in Mice Using an Implantable Guide-Screw System</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Marigil, Miguel ; Martinez-Velez, Naiara ; Domínguez, Pablo D ; Idoate, Miguel Angel ; Xipell, Enric ; Patiño-García, Ana ; Gonzalez-Huarriz, Marisol ; García-Moure, Marc ; Junier, Marie-Pierre ; Chneiweiss, Hervé ; El-Habr, Elías ; Diez-Valle, Ricardo ; Tejada-Solís, Sonia ; Alonso, Marta M</creator><creatorcontrib>Marigil, Miguel ; Martinez-Velez, Naiara ; Domínguez, Pablo D ; Idoate, Miguel Angel ; Xipell, Enric ; Patiño-García, Ana ; Gonzalez-Huarriz, Marisol ; García-Moure, Marc ; Junier, Marie-Pierre ; Chneiweiss, Hervé ; El-Habr, Elías ; Diez-Valle, Ricardo ; Tejada-Solís, Sonia ; Alonso, Marta M</creatorcontrib><description>In this work we set to develop and to validate a new in vivo frameless orthotopic Diffuse Intrinsic Pontine Glioma (DIPG) model based in the implantation of a guide-screw system.
It consisted of a guide-screw also called bolt, a Hamilton syringe with a 26-gauge needle and an insulin-like 15-gauge needle. The guide screw is 2.6 mm in length and harbors a 0.5 mm central hole which accepts the needle of the Hamilton syringe avoiding a theoretical displacement during insertion. The guide-screw is fixed on the mouse skull according to the coordinates: 1mm right to and 0.8 mm posterior to lambda. To reach the pons the Hamilton syringe is adjusted to a 6.5 mm depth using a cuff that serves as a stopper. This system allows delivering not only cells but also any kind of intratumoral chemotherapy, antibodies or gene/viral therapies.
The guide-screw was successfully implanted in 10 immunodeficient mice and the animals were inoculated with DIPG human cell lines during the same anesthetic period. All the mice developed severe neurologic symptoms and had a median overall survival of 95 days ranging the time of death from 81 to 116 days. Histopathological analysis confirmed tumor into the pons in all animals confirming the validity of this model.
Here we presented a reproducible and frameless DIPG model that allows for rapid evaluation of tumorigenicity and efficacy of chemotherapeutic or gene therapy products delivered intratumorally to the pons.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0170501</identifier><identifier>PMID: 28107439</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antibodies ; Biology and Life Sciences ; Biomarkers ; Brain cancer ; Brain research ; Brain Stem ; Brain Stem Neoplasms - etiology ; Brain tumors ; Care and treatment ; Cell Line, Tumor ; Chemotherapy ; Disease Models, Animal ; Dosage and administration ; Gene therapy ; Glioma ; Glioma - etiology ; Hospitals ; Human health and pathology ; Immunodeficiency ; Implantation ; Insertion ; Insulin ; Life Sciences ; Medical research ; Medicine and Health Sciences ; Mice ; Mice, Nude ; Needles ; Neoplasm Transplantation - methods ; Neoplasms, Experimental ; Neurosciences ; Neurosurgery ; Pediatrics ; Pons ; Research and Analysis Methods ; Skull ; Studies ; Surgical implants ; Tumorigenicity ; Tumors</subject><ispartof>PloS one, 2017-01, Vol.12 (1), p.e0170501-e0170501</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Marigil et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2017 Marigil et al 2017 Marigil et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c759t-d9da1fa72dcf13539f52943c377f4d01eae3f36f81c7b26a1138b983e037204d3</citedby><cites>FETCH-LOGICAL-c759t-d9da1fa72dcf13539f52943c377f4d01eae3f36f81c7b26a1138b983e037204d3</cites><orcidid>0000-0002-7520-7351 ; 0000-0002-5731-0929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249159/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249159/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28107439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01478511$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Marigil, Miguel</creatorcontrib><creatorcontrib>Martinez-Velez, Naiara</creatorcontrib><creatorcontrib>Domínguez, Pablo D</creatorcontrib><creatorcontrib>Idoate, Miguel Angel</creatorcontrib><creatorcontrib>Xipell, Enric</creatorcontrib><creatorcontrib>Patiño-García, Ana</creatorcontrib><creatorcontrib>Gonzalez-Huarriz, Marisol</creatorcontrib><creatorcontrib>García-Moure, Marc</creatorcontrib><creatorcontrib>Junier, Marie-Pierre</creatorcontrib><creatorcontrib>Chneiweiss, Hervé</creatorcontrib><creatorcontrib>El-Habr, Elías</creatorcontrib><creatorcontrib>Diez-Valle, Ricardo</creatorcontrib><creatorcontrib>Tejada-Solís, Sonia</creatorcontrib><creatorcontrib>Alonso, Marta M</creatorcontrib><title>Development of a DIPG Orthotopic Model in Mice Using an Implantable Guide-Screw System</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In this work we set to develop and to validate a new in vivo frameless orthotopic Diffuse Intrinsic Pontine Glioma (DIPG) model based in the implantation of a guide-screw system.
It consisted of a guide-screw also called bolt, a Hamilton syringe with a 26-gauge needle and an insulin-like 15-gauge needle. The guide screw is 2.6 mm in length and harbors a 0.5 mm central hole which accepts the needle of the Hamilton syringe avoiding a theoretical displacement during insertion. The guide-screw is fixed on the mouse skull according to the coordinates: 1mm right to and 0.8 mm posterior to lambda. To reach the pons the Hamilton syringe is adjusted to a 6.5 mm depth using a cuff that serves as a stopper. This system allows delivering not only cells but also any kind of intratumoral chemotherapy, antibodies or gene/viral therapies.
The guide-screw was successfully implanted in 10 immunodeficient mice and the animals were inoculated with DIPG human cell lines during the same anesthetic period. All the mice developed severe neurologic symptoms and had a median overall survival of 95 days ranging the time of death from 81 to 116 days. Histopathological analysis confirmed tumor into the pons in all animals confirming the validity of this model.
Here we presented a reproducible and frameless DIPG model that allows for rapid evaluation of tumorigenicity and efficacy of chemotherapeutic or gene therapy products delivered intratumorally to the pons.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Brain cancer</subject><subject>Brain research</subject><subject>Brain Stem</subject><subject>Brain Stem Neoplasms - etiology</subject><subject>Brain tumors</subject><subject>Care and treatment</subject><subject>Cell Line, Tumor</subject><subject>Chemotherapy</subject><subject>Disease Models, Animal</subject><subject>Dosage and administration</subject><subject>Gene therapy</subject><subject>Glioma</subject><subject>Glioma - etiology</subject><subject>Hospitals</subject><subject>Human health and pathology</subject><subject>Immunodeficiency</subject><subject>Implantation</subject><subject>Insertion</subject><subject>Insulin</subject><subject>Life Sciences</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Needles</subject><subject>Neoplasm Transplantation - methods</subject><subject>Neoplasms, Experimental</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>Pediatrics</subject><subject>Pons</subject><subject>Research and Analysis Methods</subject><subject>Skull</subject><subject>Studies</subject><subject>Surgical implants</subject><subject>Tumorigenicity</subject><subject>Tumors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1Fv0zAUhSMEYmPwDxBEQkLsocXXjuP4BanaoKvUqYiyvVqO47SukjjESWH_HrfNpmbaw5SHRNffOfY9zg2C94DGQBh83diuqWQxrm2lxwgYogheBKfACR7FGJGXR98nwRvnNghRksTx6-AEJ4BYRPhpcHupt7qwdamrNrR5KMPL2c9puGjatW1tbVR4bTNdhKYKr43S4Y0z1SqUVTgr60JWrUwLHU47k-nRUjX6b7i8c60u3wavclk4_a5_nwU3P77_vrgazRfT2cVkPlKM8naU8UxCLhnOVA6EEp5TzCOiCGN5lCHQUpOcxHkCiqU4lgAkSXlCNCIMoygjZ8HHg29dWCf6SJyAJEaY0xhzT8wORGblRtSNKWVzJ6w0Yl-wzUrIpjWq0AKlFFHG04ikJCJ5wpXEwIBrSkisgHqvb_1uXVrqTPnMGlkMTIcrlVmLld0KiiMOdHeY84PB-pHsajIXuxqCiCUUYAue_dJv1tg_nXatKI1TuvCpa9vte0wIYQnGz0GBJpFvxaOfHqFPh9ZTK-lzMVVufTtqZyom_oA4YbCnxk9Q_sl0aZT_LXPj6wPB-UDgmVb_a1eyc07Mlr-ezy5uh-znI3atZdGunS261tjKDcHoAKrGOtfo_OESAIndVN2nIXZTJfqp8rIPx_f-ILofI_IfLCUYTA</recordid><startdate>20170120</startdate><enddate>20170120</enddate><creator>Marigil, Miguel</creator><creator>Martinez-Velez, Naiara</creator><creator>Domínguez, Pablo D</creator><creator>Idoate, Miguel Angel</creator><creator>Xipell, Enric</creator><creator>Patiño-García, Ana</creator><creator>Gonzalez-Huarriz, Marisol</creator><creator>García-Moure, Marc</creator><creator>Junier, Marie-Pierre</creator><creator>Chneiweiss, Hervé</creator><creator>El-Habr, Elías</creator><creator>Diez-Valle, Ricardo</creator><creator>Tejada-Solís, Sonia</creator><creator>Alonso, Marta M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7520-7351</orcidid><orcidid>https://orcid.org/0000-0002-5731-0929</orcidid></search><sort><creationdate>20170120</creationdate><title>Development of a DIPG Orthotopic Model in Mice Using an Implantable Guide-Screw System</title><author>Marigil, Miguel ; Martinez-Velez, Naiara ; Domínguez, Pablo D ; Idoate, Miguel Angel ; Xipell, Enric ; Patiño-García, Ana ; Gonzalez-Huarriz, Marisol ; García-Moure, Marc ; Junier, Marie-Pierre ; Chneiweiss, Hervé ; El-Habr, Elías ; Diez-Valle, Ricardo ; Tejada-Solís, Sonia ; Alonso, Marta M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c759t-d9da1fa72dcf13539f52943c377f4d01eae3f36f81c7b26a1138b983e037204d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Brain cancer</topic><topic>Brain research</topic><topic>Brain Stem</topic><topic>Brain Stem Neoplasms - etiology</topic><topic>Brain tumors</topic><topic>Care and treatment</topic><topic>Cell Line, Tumor</topic><topic>Chemotherapy</topic><topic>Disease Models, Animal</topic><topic>Dosage and administration</topic><topic>Gene therapy</topic><topic>Glioma</topic><topic>Glioma - etiology</topic><topic>Hospitals</topic><topic>Human health and pathology</topic><topic>Immunodeficiency</topic><topic>Implantation</topic><topic>Insertion</topic><topic>Insulin</topic><topic>Life Sciences</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Needles</topic><topic>Neoplasm Transplantation - methods</topic><topic>Neoplasms, Experimental</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>Pediatrics</topic><topic>Pons</topic><topic>Research and Analysis Methods</topic><topic>Skull</topic><topic>Studies</topic><topic>Surgical implants</topic><topic>Tumorigenicity</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marigil, Miguel</creatorcontrib><creatorcontrib>Martinez-Velez, Naiara</creatorcontrib><creatorcontrib>Domínguez, Pablo D</creatorcontrib><creatorcontrib>Idoate, Miguel Angel</creatorcontrib><creatorcontrib>Xipell, Enric</creatorcontrib><creatorcontrib>Patiño-García, Ana</creatorcontrib><creatorcontrib>Gonzalez-Huarriz, Marisol</creatorcontrib><creatorcontrib>García-Moure, Marc</creatorcontrib><creatorcontrib>Junier, Marie-Pierre</creatorcontrib><creatorcontrib>Chneiweiss, Hervé</creatorcontrib><creatorcontrib>El-Habr, Elías</creatorcontrib><creatorcontrib>Diez-Valle, Ricardo</creatorcontrib><creatorcontrib>Tejada-Solís, Sonia</creatorcontrib><creatorcontrib>Alonso, Marta M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marigil, Miguel</au><au>Martinez-Velez, Naiara</au><au>Domínguez, Pablo D</au><au>Idoate, Miguel Angel</au><au>Xipell, Enric</au><au>Patiño-García, Ana</au><au>Gonzalez-Huarriz, Marisol</au><au>García-Moure, Marc</au><au>Junier, Marie-Pierre</au><au>Chneiweiss, Hervé</au><au>El-Habr, Elías</au><au>Diez-Valle, Ricardo</au><au>Tejada-Solís, Sonia</au><au>Alonso, Marta M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a DIPG Orthotopic Model in Mice Using an Implantable Guide-Screw System</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-01-20</date><risdate>2017</risdate><volume>12</volume><issue>1</issue><spage>e0170501</spage><epage>e0170501</epage><pages>e0170501-e0170501</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In this work we set to develop and to validate a new in vivo frameless orthotopic Diffuse Intrinsic Pontine Glioma (DIPG) model based in the implantation of a guide-screw system.
It consisted of a guide-screw also called bolt, a Hamilton syringe with a 26-gauge needle and an insulin-like 15-gauge needle. The guide screw is 2.6 mm in length and harbors a 0.5 mm central hole which accepts the needle of the Hamilton syringe avoiding a theoretical displacement during insertion. The guide-screw is fixed on the mouse skull according to the coordinates: 1mm right to and 0.8 mm posterior to lambda. To reach the pons the Hamilton syringe is adjusted to a 6.5 mm depth using a cuff that serves as a stopper. This system allows delivering not only cells but also any kind of intratumoral chemotherapy, antibodies or gene/viral therapies.
The guide-screw was successfully implanted in 10 immunodeficient mice and the animals were inoculated with DIPG human cell lines during the same anesthetic period. All the mice developed severe neurologic symptoms and had a median overall survival of 95 days ranging the time of death from 81 to 116 days. Histopathological analysis confirmed tumor into the pons in all animals confirming the validity of this model.
Here we presented a reproducible and frameless DIPG model that allows for rapid evaluation of tumorigenicity and efficacy of chemotherapeutic or gene therapy products delivered intratumorally to the pons.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28107439</pmid><doi>10.1371/journal.pone.0170501</doi><tpages>e0170501</tpages><orcidid>https://orcid.org/0000-0002-7520-7351</orcidid><orcidid>https://orcid.org/0000-0002-5731-0929</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-01, Vol.12 (1), p.e0170501-e0170501 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1860295629 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Antibodies Biology and Life Sciences Biomarkers Brain cancer Brain research Brain Stem Brain Stem Neoplasms - etiology Brain tumors Care and treatment Cell Line, Tumor Chemotherapy Disease Models, Animal Dosage and administration Gene therapy Glioma Glioma - etiology Hospitals Human health and pathology Immunodeficiency Implantation Insertion Insulin Life Sciences Medical research Medicine and Health Sciences Mice Mice, Nude Needles Neoplasm Transplantation - methods Neoplasms, Experimental Neurosciences Neurosurgery Pediatrics Pons Research and Analysis Methods Skull Studies Surgical implants Tumorigenicity Tumors |
title | Development of a DIPG Orthotopic Model in Mice Using an Implantable Guide-Screw System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A38%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20DIPG%20Orthotopic%20Model%20in%20Mice%20Using%20an%20Implantable%20Guide-Screw%20System&rft.jtitle=PloS%20one&rft.au=Marigil,%20Miguel&rft.date=2017-01-20&rft.volume=12&rft.issue=1&rft.spage=e0170501&rft.epage=e0170501&rft.pages=e0170501-e0170501&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0170501&rft_dat=%3Cgale_plos_%3EA478287129%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1860295629&rft_id=info:pmid/28107439&rft_galeid=A478287129&rft_doaj_id=oai_doaj_org_article_0b50579b43b343f89ca21719e5336c15&rfr_iscdi=true |