A New Statistical Approach to Characterize Chemical-Elicited Behavioral Effects in High-Throughput Studies Using Zebrafish
Zebrafish have become an important alternative model for characterizing chemical bioactivity, partly due to the efficiency at which systematic, high-dimensional data can be generated. However, these new data present analytical challenges associated with scale and diversity. We developed a novel, rob...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-01, Vol.12 (1), p.e0169408 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | e0169408 |
container_title | PloS one |
container_volume | 12 |
creator | Zhang, Guozhu Truong, Lisa Tanguay, Robert L Reif, David M |
description | Zebrafish have become an important alternative model for characterizing chemical bioactivity, partly due to the efficiency at which systematic, high-dimensional data can be generated. However, these new data present analytical challenges associated with scale and diversity. We developed a novel, robust statistical approach to characterize chemical-elicited effects in behavioral data from high-throughput screening (HTS) of all 1,060 Toxicity Forecaster (ToxCast™) chemicals across 5 concentrations at 120 hours post-fertilization (hpf). Taking advantage of the immense scale of data for a global view, we show that this new approach reduces bias introduced by extreme values yet allows for diverse response patterns that confound the application of traditional statistics. We have also shown that, as a summary measure of response for local tests of chemical-associated behavioral effects, it achieves a significant reduction in coefficient of variation compared to many traditional statistical modeling methods. This effective increase in signal-to-noise ratio augments statistical power and is observed across experimental periods (light/dark conditions) that display varied distributional response patterns. Finally, we integrated results with data from concomitant developmental endpoint measurements to show that appropriate statistical handling of HTS behavioral data can add important biological context that informs mechanistic hypotheses. |
doi_str_mv | 10.1371/journal.pone.0169408 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1859788201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478133195</galeid><doaj_id>oai_doaj_org_article_1512459a0c124fb2a611a9cfe7e84ad0</doaj_id><sourcerecordid>A478133195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-b7f10df0ec76b150078e674d52b54635b8728bcf4c4edbab6cd21b5bfda6a2263</originalsourceid><addsrcrecordid>eNqNk81u1DAUhSMEoqXwBggiISFYZLCdP2eDNIwGOlJFJdqyYGM5znXiUSZObadAnx6HSasJ6gJl4cT5zrnxublB8BKjBY5z_GGrB9PxdtHrDhYIZ0WC6KPgGBcxiTKC4scH90fBM2u3CKUxzbKnwRGhqCgSSo6D22X4FX6GF447ZZ0SvA2XfW80F03odLhquOHCgVG34B9gNxLRulVCOajCT9DwG6WNV62lBOFsqLrwVNVNdNkYPdRNPzhvPlQKbHhlVVeHP6A0XCrbPA-eSN5aeDGtJ8HV5_Xl6jQ6O_-yWS3PIpGT1EVlLjGqJAKRZyVOEcopZHlSpaRMkyxOS5oTWgqZiASqkpeZqAgu01JWPOOEZPFJ8Hrv27fasik2yzBNi5xSgrAnNnui0nzLeqN23Pxmmiv2d0ObmnHjw2mB4RSTJC04En6VJeEZxrwQEnKgCa-Q9_o4VRvKHVQCOufjmZnO33SqYbW-YSlJSJKn3uDdZGD09QDWsZ2yAtqWd6CH8bszGse-q8Sjb_5BHz7dRNXcH0B1Uvu6YjRlyySnOI5xMZZdPED5qxqb7v8xqfz-TPB-JvCMg1-u5oO1bHPx7f_Z8-9z9u0B2wBvXWN1OzilOzsHkz0ojLbWgLwPGSM2jshdGmwcETaNiJe9OmzQvehuJuI_qu0Mxw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859788201</pqid></control><display><type>article</type><title>A New Statistical Approach to Characterize Chemical-Elicited Behavioral Effects in High-Throughput Studies Using Zebrafish</title><source>MEDLINE</source><source>Public Library of Science</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Zhang, Guozhu ; Truong, Lisa ; Tanguay, Robert L ; Reif, David M</creator><contributor>Neuhauss, Stephan C.F.</contributor><creatorcontrib>Zhang, Guozhu ; Truong, Lisa ; Tanguay, Robert L ; Reif, David M ; Neuhauss, Stephan C.F.</creatorcontrib><description>Zebrafish have become an important alternative model for characterizing chemical bioactivity, partly due to the efficiency at which systematic, high-dimensional data can be generated. However, these new data present analytical challenges associated with scale and diversity. We developed a novel, robust statistical approach to characterize chemical-elicited effects in behavioral data from high-throughput screening (HTS) of all 1,060 Toxicity Forecaster (ToxCast™) chemicals across 5 concentrations at 120 hours post-fertilization (hpf). Taking advantage of the immense scale of data for a global view, we show that this new approach reduces bias introduced by extreme values yet allows for diverse response patterns that confound the application of traditional statistics. We have also shown that, as a summary measure of response for local tests of chemical-associated behavioral effects, it achieves a significant reduction in coefficient of variation compared to many traditional statistical modeling methods. This effective increase in signal-to-noise ratio augments statistical power and is observed across experimental periods (light/dark conditions) that display varied distributional response patterns. Finally, we integrated results with data from concomitant developmental endpoint measurements to show that appropriate statistical handling of HTS behavioral data can add important biological context that informs mechanistic hypotheses.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0169408</identifier><identifier>PMID: 28099482</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Automation ; Behavior ; Biocompatibility ; Bioinformatics ; Biological activity ; Biology and Life Sciences ; Biometry - methods ; Chemicals ; Coefficient of variation ; Danio rerio ; Data processing ; Embryos ; Extreme values ; Fertilization ; Genomes ; High-throughput screening ; High-Throughput Screening Assays - methods ; Laboratories ; Light effects ; Mathematical analysis ; Mathematical models ; Medicine and Health Sciences ; Models, Statistical ; Multivariate analysis ; Neurotoxicity ; Physical Sciences ; Physiological aspects ; R&D ; Research & development ; Research and Analysis Methods ; Statistical methods ; Statistical models ; Studies ; Toxicity ; Toxicology ; Variance analysis ; Zebrafish</subject><ispartof>PloS one, 2017-01, Vol.12 (1), p.e0169408</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Zhang et al 2017 Zhang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-b7f10df0ec76b150078e674d52b54635b8728bcf4c4edbab6cd21b5bfda6a2263</citedby><cites>FETCH-LOGICAL-c725t-b7f10df0ec76b150078e674d52b54635b8728bcf4c4edbab6cd21b5bfda6a2263</cites><orcidid>0000-0001-7815-6767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242475/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242475/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79472,79473</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28099482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Neuhauss, Stephan C.F.</contributor><creatorcontrib>Zhang, Guozhu</creatorcontrib><creatorcontrib>Truong, Lisa</creatorcontrib><creatorcontrib>Tanguay, Robert L</creatorcontrib><creatorcontrib>Reif, David M</creatorcontrib><title>A New Statistical Approach to Characterize Chemical-Elicited Behavioral Effects in High-Throughput Studies Using Zebrafish</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Zebrafish have become an important alternative model for characterizing chemical bioactivity, partly due to the efficiency at which systematic, high-dimensional data can be generated. However, these new data present analytical challenges associated with scale and diversity. We developed a novel, robust statistical approach to characterize chemical-elicited effects in behavioral data from high-throughput screening (HTS) of all 1,060 Toxicity Forecaster (ToxCast™) chemicals across 5 concentrations at 120 hours post-fertilization (hpf). Taking advantage of the immense scale of data for a global view, we show that this new approach reduces bias introduced by extreme values yet allows for diverse response patterns that confound the application of traditional statistics. We have also shown that, as a summary measure of response for local tests of chemical-associated behavioral effects, it achieves a significant reduction in coefficient of variation compared to many traditional statistical modeling methods. This effective increase in signal-to-noise ratio augments statistical power and is observed across experimental periods (light/dark conditions) that display varied distributional response patterns. Finally, we integrated results with data from concomitant developmental endpoint measurements to show that appropriate statistical handling of HTS behavioral data can add important biological context that informs mechanistic hypotheses.</description><subject>Animals</subject><subject>Automation</subject><subject>Behavior</subject><subject>Biocompatibility</subject><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Biology and Life Sciences</subject><subject>Biometry - methods</subject><subject>Chemicals</subject><subject>Coefficient of variation</subject><subject>Danio rerio</subject><subject>Data processing</subject><subject>Embryos</subject><subject>Extreme values</subject><subject>Fertilization</subject><subject>Genomes</subject><subject>High-throughput screening</subject><subject>High-Throughput Screening Assays - methods</subject><subject>Laboratories</subject><subject>Light effects</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Models, Statistical</subject><subject>Multivariate analysis</subject><subject>Neurotoxicity</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>R&D</subject><subject>Research & development</subject><subject>Research and Analysis Methods</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Studies</subject><subject>Toxicity</subject><subject>Toxicology</subject><subject>Variance analysis</subject><subject>Zebrafish</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk81u1DAUhSMEoqXwBggiISFYZLCdP2eDNIwGOlJFJdqyYGM5znXiUSZObadAnx6HSasJ6gJl4cT5zrnxublB8BKjBY5z_GGrB9PxdtHrDhYIZ0WC6KPgGBcxiTKC4scH90fBM2u3CKUxzbKnwRGhqCgSSo6D22X4FX6GF447ZZ0SvA2XfW80F03odLhquOHCgVG34B9gNxLRulVCOajCT9DwG6WNV62lBOFsqLrwVNVNdNkYPdRNPzhvPlQKbHhlVVeHP6A0XCrbPA-eSN5aeDGtJ8HV5_Xl6jQ6O_-yWS3PIpGT1EVlLjGqJAKRZyVOEcopZHlSpaRMkyxOS5oTWgqZiASqkpeZqAgu01JWPOOEZPFJ8Hrv27fasik2yzBNi5xSgrAnNnui0nzLeqN23Pxmmiv2d0ObmnHjw2mB4RSTJC04En6VJeEZxrwQEnKgCa-Q9_o4VRvKHVQCOufjmZnO33SqYbW-YSlJSJKn3uDdZGD09QDWsZ2yAtqWd6CH8bszGse-q8Sjb_5BHz7dRNXcH0B1Uvu6YjRlyySnOI5xMZZdPED5qxqb7v8xqfz-TPB-JvCMg1-u5oO1bHPx7f_Z8-9z9u0B2wBvXWN1OzilOzsHkz0ojLbWgLwPGSM2jshdGmwcETaNiJe9OmzQvehuJuI_qu0Mxw</recordid><startdate>20170118</startdate><enddate>20170118</enddate><creator>Zhang, Guozhu</creator><creator>Truong, Lisa</creator><creator>Tanguay, Robert L</creator><creator>Reif, David M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7815-6767</orcidid></search><sort><creationdate>20170118</creationdate><title>A New Statistical Approach to Characterize Chemical-Elicited Behavioral Effects in High-Throughput Studies Using Zebrafish</title><author>Zhang, Guozhu ; Truong, Lisa ; Tanguay, Robert L ; Reif, David M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-b7f10df0ec76b150078e674d52b54635b8728bcf4c4edbab6cd21b5bfda6a2263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Automation</topic><topic>Behavior</topic><topic>Biocompatibility</topic><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Biology and Life Sciences</topic><topic>Biometry - methods</topic><topic>Chemicals</topic><topic>Coefficient of variation</topic><topic>Danio rerio</topic><topic>Data processing</topic><topic>Embryos</topic><topic>Extreme values</topic><topic>Fertilization</topic><topic>Genomes</topic><topic>High-throughput screening</topic><topic>High-Throughput Screening Assays - methods</topic><topic>Laboratories</topic><topic>Light effects</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Models, Statistical</topic><topic>Multivariate analysis</topic><topic>Neurotoxicity</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>R&D</topic><topic>Research & development</topic><topic>Research and Analysis Methods</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Studies</topic><topic>Toxicity</topic><topic>Toxicology</topic><topic>Variance analysis</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guozhu</creatorcontrib><creatorcontrib>Truong, Lisa</creatorcontrib><creatorcontrib>Tanguay, Robert L</creatorcontrib><creatorcontrib>Reif, David M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guozhu</au><au>Truong, Lisa</au><au>Tanguay, Robert L</au><au>Reif, David M</au><au>Neuhauss, Stephan C.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Statistical Approach to Characterize Chemical-Elicited Behavioral Effects in High-Throughput Studies Using Zebrafish</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-01-18</date><risdate>2017</risdate><volume>12</volume><issue>1</issue><spage>e0169408</spage><pages>e0169408-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Zebrafish have become an important alternative model for characterizing chemical bioactivity, partly due to the efficiency at which systematic, high-dimensional data can be generated. However, these new data present analytical challenges associated with scale and diversity. We developed a novel, robust statistical approach to characterize chemical-elicited effects in behavioral data from high-throughput screening (HTS) of all 1,060 Toxicity Forecaster (ToxCast™) chemicals across 5 concentrations at 120 hours post-fertilization (hpf). Taking advantage of the immense scale of data for a global view, we show that this new approach reduces bias introduced by extreme values yet allows for diverse response patterns that confound the application of traditional statistics. We have also shown that, as a summary measure of response for local tests of chemical-associated behavioral effects, it achieves a significant reduction in coefficient of variation compared to many traditional statistical modeling methods. This effective increase in signal-to-noise ratio augments statistical power and is observed across experimental periods (light/dark conditions) that display varied distributional response patterns. Finally, we integrated results with data from concomitant developmental endpoint measurements to show that appropriate statistical handling of HTS behavioral data can add important biological context that informs mechanistic hypotheses.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28099482</pmid><doi>10.1371/journal.pone.0169408</doi><tpages>e0169408</tpages><orcidid>https://orcid.org/0000-0001-7815-6767</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-01, Vol.12 (1), p.e0169408 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1859788201 |
source | MEDLINE; Public Library of Science; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Animals Automation Behavior Biocompatibility Bioinformatics Biological activity Biology and Life Sciences Biometry - methods Chemicals Coefficient of variation Danio rerio Data processing Embryos Extreme values Fertilization Genomes High-throughput screening High-Throughput Screening Assays - methods Laboratories Light effects Mathematical analysis Mathematical models Medicine and Health Sciences Models, Statistical Multivariate analysis Neurotoxicity Physical Sciences Physiological aspects R&D Research & development Research and Analysis Methods Statistical methods Statistical models Studies Toxicity Toxicology Variance analysis Zebrafish |
title | A New Statistical Approach to Characterize Chemical-Elicited Behavioral Effects in High-Throughput Studies Using Zebrafish |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Statistical%20Approach%20to%20Characterize%20Chemical-Elicited%20Behavioral%20Effects%20in%20High-Throughput%20Studies%20Using%20Zebrafish&rft.jtitle=PloS%20one&rft.au=Zhang,%20Guozhu&rft.date=2017-01-18&rft.volume=12&rft.issue=1&rft.spage=e0169408&rft.pages=e0169408-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0169408&rft_dat=%3Cgale_plos_%3EA478133195%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859788201&rft_id=info:pmid/28099482&rft_galeid=A478133195&rft_doaj_id=oai_doaj_org_article_1512459a0c124fb2a611a9cfe7e84ad0&rfr_iscdi=true |