Normal Modes Expose Active Sites in Enzymes

Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes thr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2016-12, Vol.12 (12), p.e1005293-e1005293
Hauptverfasser: Glantz-Gashai, Yitav, Meirson, Tomer, Samson, Abraham O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1005293
container_issue 12
container_start_page e1005293
container_title PLoS computational biology
container_volume 12
creator Glantz-Gashai, Yitav
Meirson, Tomer
Samson, Abraham O
description Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes.
doi_str_mv 10.1371/journal.pcbi.1005293
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1858867724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478614981</galeid><doaj_id>oai_doaj_org_article_569bebde27f14bf0968d393fe42e326d</doaj_id><sourcerecordid>A478614981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c666t-ee89ccd498a87ad54939f82fba28f224999b5fa48c9195613d1e356b63468e583</originalsourceid><addsrcrecordid>eNqVkl1rFDEUhgdRbK3-A9EBbxTZNd-T3AhLWXWhVrB6HTKZkzXLzGSbzJTWX2_WnZaueKHkIuHkOW_OOXmL4jlGc0wr_G4Txtibdr61tZ9jhDhR9EFxjDmns4py-fDe-ah4ktIGoXxU4nFxRCRChJHquHh7HmJn2vJzaCCVy-ttSFAu7OCvoLzwQ475vlz2P286SE-LR860CZ5N-0nx_cPy2-mn2dmXj6vTxdnMCiGGGYBU1jZMSSMr03CmqHKSuNoQ6QhhSqmaO8OkVVhxgWmDgXJRC8qEBC7pSfFyr7ttQ9JTn0ljyaUUVUVYJlZ7oglmo7fRdybe6GC8_h0Ica1NHLxtQXOhaqgbIJXDrHZICdlQRR0wApSIJmu9n14b6w4aC_0QTXsgenjT-x96Ha40J4QjJLLA60kghssR0qA7nyy0rekhjLu6haQIE1z9A8qxUBxVuxZf_YH-fRDzPbU2uVffu5BLtHk10HkbenA-xxeskgLnD8E54c1BQmYGuB7WZkxJry6-_gd7fsiyPWtjSCmCuxsgRnrn19vy9c6vevJrTntxf_h3SbcGpb8AGJ3j8A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858867724</pqid></control><display><type>article</type><title>Normal Modes Expose Active Sites in Enzymes</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Glantz-Gashai, Yitav ; Meirson, Tomer ; Samson, Abraham O</creator><creatorcontrib>Glantz-Gashai, Yitav ; Meirson, Tomer ; Samson, Abraham O</creatorcontrib><description>Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1005293</identifier><identifier>PMID: 28002427</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Binding sites ; Bioinformatics ; Biology and Life Sciences ; Catalytic Domain ; Computational Biology - methods ; Databases, Protein ; Datasets ; Enzyme kinetics ; Enzymes ; Enzymes - chemistry ; Enzymes - metabolism ; Enzymes - ultrastructure ; Funding ; Ligands ; Ligands (Biochemistry) ; Methods ; Models, Molecular ; Neural networks ; Observations ; Physical Sciences ; Physiological aspects ; Proteins ; Research and Analysis Methods ; Solvents ; Success</subject><ispartof>PLoS computational biology, 2016-12, Vol.12 (12), p.e1005293-e1005293</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Glantz-Gashai Y, Meirson T, Samson AO (2016) Normal Modes Expose Active Sites in Enzymes. PLoS Comput Biol 12(12): e1005293. doi:10.1371/journal.pcbi.1005293</rights><rights>2016 Glantz-Gashai et al 2016 Glantz-Gashai et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Glantz-Gashai Y, Meirson T, Samson AO (2016) Normal Modes Expose Active Sites in Enzymes. PLoS Comput Biol 12(12): e1005293. doi:10.1371/journal.pcbi.1005293</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c666t-ee89ccd498a87ad54939f82fba28f224999b5fa48c9195613d1e356b63468e583</citedby><cites>FETCH-LOGICAL-c666t-ee89ccd498a87ad54939f82fba28f224999b5fa48c9195613d1e356b63468e583</cites><orcidid>0000-0002-5011-5477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5225006/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5225006/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28002427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Glantz-Gashai, Yitav</creatorcontrib><creatorcontrib>Meirson, Tomer</creatorcontrib><creatorcontrib>Samson, Abraham O</creatorcontrib><title>Normal Modes Expose Active Sites in Enzymes</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes.</description><subject>Binding sites</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Catalytic Domain</subject><subject>Computational Biology - methods</subject><subject>Databases, Protein</subject><subject>Datasets</subject><subject>Enzyme kinetics</subject><subject>Enzymes</subject><subject>Enzymes - chemistry</subject><subject>Enzymes - metabolism</subject><subject>Enzymes - ultrastructure</subject><subject>Funding</subject><subject>Ligands</subject><subject>Ligands (Biochemistry)</subject><subject>Methods</subject><subject>Models, Molecular</subject><subject>Neural networks</subject><subject>Observations</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Solvents</subject><subject>Success</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl1rFDEUhgdRbK3-A9EBbxTZNd-T3AhLWXWhVrB6HTKZkzXLzGSbzJTWX2_WnZaueKHkIuHkOW_OOXmL4jlGc0wr_G4Txtibdr61tZ9jhDhR9EFxjDmns4py-fDe-ah4ktIGoXxU4nFxRCRChJHquHh7HmJn2vJzaCCVy-ttSFAu7OCvoLzwQ475vlz2P286SE-LR860CZ5N-0nx_cPy2-mn2dmXj6vTxdnMCiGGGYBU1jZMSSMr03CmqHKSuNoQ6QhhSqmaO8OkVVhxgWmDgXJRC8qEBC7pSfFyr7ttQ9JTn0ljyaUUVUVYJlZ7oglmo7fRdybe6GC8_h0Ica1NHLxtQXOhaqgbIJXDrHZICdlQRR0wApSIJmu9n14b6w4aC_0QTXsgenjT-x96Ha40J4QjJLLA60kghssR0qA7nyy0rekhjLu6haQIE1z9A8qxUBxVuxZf_YH-fRDzPbU2uVffu5BLtHk10HkbenA-xxeskgLnD8E54c1BQmYGuB7WZkxJry6-_gd7fsiyPWtjSCmCuxsgRnrn19vy9c6vevJrTntxf_h3SbcGpb8AGJ3j8A</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Glantz-Gashai, Yitav</creator><creator>Meirson, Tomer</creator><creator>Samson, Abraham O</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5011-5477</orcidid></search><sort><creationdate>20161201</creationdate><title>Normal Modes Expose Active Sites in Enzymes</title><author>Glantz-Gashai, Yitav ; Meirson, Tomer ; Samson, Abraham O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c666t-ee89ccd498a87ad54939f82fba28f224999b5fa48c9195613d1e356b63468e583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Binding sites</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Catalytic Domain</topic><topic>Computational Biology - methods</topic><topic>Databases, Protein</topic><topic>Datasets</topic><topic>Enzyme kinetics</topic><topic>Enzymes</topic><topic>Enzymes - chemistry</topic><topic>Enzymes - metabolism</topic><topic>Enzymes - ultrastructure</topic><topic>Funding</topic><topic>Ligands</topic><topic>Ligands (Biochemistry)</topic><topic>Methods</topic><topic>Models, Molecular</topic><topic>Neural networks</topic><topic>Observations</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Solvents</topic><topic>Success</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glantz-Gashai, Yitav</creatorcontrib><creatorcontrib>Meirson, Tomer</creatorcontrib><creatorcontrib>Samson, Abraham O</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glantz-Gashai, Yitav</au><au>Meirson, Tomer</au><au>Samson, Abraham O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normal Modes Expose Active Sites in Enzymes</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>12</volume><issue>12</issue><spage>e1005293</spage><epage>e1005293</epage><pages>e1005293-e1005293</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28002427</pmid><doi>10.1371/journal.pcbi.1005293</doi><orcidid>https://orcid.org/0000-0002-5011-5477</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2016-12, Vol.12 (12), p.e1005293-e1005293
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1858867724
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Binding sites
Bioinformatics
Biology and Life Sciences
Catalytic Domain
Computational Biology - methods
Databases, Protein
Datasets
Enzyme kinetics
Enzymes
Enzymes - chemistry
Enzymes - metabolism
Enzymes - ultrastructure
Funding
Ligands
Ligands (Biochemistry)
Methods
Models, Molecular
Neural networks
Observations
Physical Sciences
Physiological aspects
Proteins
Research and Analysis Methods
Solvents
Success
title Normal Modes Expose Active Sites in Enzymes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normal%20Modes%20Expose%20Active%20Sites%20in%20Enzymes&rft.jtitle=PLoS%20computational%20biology&rft.au=Glantz-Gashai,%20Yitav&rft.date=2016-12-01&rft.volume=12&rft.issue=12&rft.spage=e1005293&rft.epage=e1005293&rft.pages=e1005293-e1005293&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1005293&rft_dat=%3Cgale_plos_%3EA478614981%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1858867724&rft_id=info:pmid/28002427&rft_galeid=A478614981&rft_doaj_id=oai_doaj_org_article_569bebde27f14bf0968d393fe42e326d&rfr_iscdi=true