Selection for Mitochondrial Quality Drives Evolution of the Germline
The origin of the germline-soma distinction is a fundamental unsolved question. Plants and basal metazoans do not have a germline but generate gametes from pluripotent stem cells in somatic tissues (somatic gametogenesis). In contrast, most bilaterians sequester a dedicated germline early in develop...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2016-12, Vol.14 (12), p.e2000410-e2000410 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2000410 |
---|---|
container_issue | 12 |
container_start_page | e2000410 |
container_title | PLoS biology |
container_volume | 14 |
creator | Radzvilavicius, Arunas L Hadjivasiliou, Zena Pomiankowski, Andrew Lane, Nick |
description | The origin of the germline-soma distinction is a fundamental unsolved question. Plants and basal metazoans do not have a germline but generate gametes from pluripotent stem cells in somatic tissues (somatic gametogenesis). In contrast, most bilaterians sequester a dedicated germline early in development. We develop an evolutionary model which shows that selection for mitochondrial quality drives germline evolution. In organisms with low mitochondrial replication error rates, segregation of mutations over multiple cell divisions generates variation, allowing selection to optimize gamete quality through somatic gametogenesis. Higher mutation rates promote early germline sequestration. We also consider how oogamy (a large female gamete packed with mitochondria) alters selection on the germline. Oogamy is beneficial as it reduces mitochondrial segregation in early development, improving adult fitness by restricting variation between tissues. But it also limits variation between early-sequestered oocytes, undermining gamete quality. Oocyte variation is restored through proliferation of germline cells, producing more germ cells than strictly needed, explaining the random culling (atresia) of precursor cells in bilaterians. Unlike other models of germline evolution, selection for mitochondrial quality can explain the stability of somatic gametogenesis in plants and basal metazoans, the evolution of oogamy in all plants and animals with tissue differentiation, and the mutational forces driving early germline sequestration in active bilaterians. The origins of predation in motile bilaterians in the Cambrian explosion is likely to have increased rates of tissue turnover and mitochondrial replication errors, in turn driving germline evolution and the emergence of complex developmental processes. |
doi_str_mv | 10.1371/journal.pbio.2000410 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1858865368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478614918</galeid><doaj_id>oai_doaj_org_article_d428cb0c0b1f483cbc37963ba81d663e</doaj_id><sourcerecordid>A478614918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c728t-d5dd7b5701f8557deba670f9688532d3ee79fbafe71e3e242871361eb0817b663</originalsourceid><addsrcrecordid>eNqVk01vEzEQhlcIREvhHyBYiQscEvyxXnsvlaq2lEiFCgpcLa89Thw562DvVvTf4zTbqkE9FPlga_zMO6_HmqJ4jdEUU44_LsMQO-Wn69aFKUEIVRg9KfYxq9iEC8Ge3jvvFS9SWiJESEPE82KP8KbhjLL94uQSPOjeha60IZZfXB_0InQmOuXLb4Pyrr8uT6K7glSeXgU_3KDBlv0CyjOIK-86eFk8s8oneDXuB8XPT6c_jj9Pzi_OZsdH5xPNiegnhhnDW8YRtoIxbqBVNUe2qbNDSgwF4I1tlQWOgQKpiOCY1hhaJDBv65oeFG-3umsfkhwbkCQWTIia0VpkYrYlTFBLuY5upeK1DMrJm0CIc6li77QHabK-bpFGLbaVoLrVlDc1bZXAJteCrHU4VhvaFRgNXR-V3xHdvencQs7DlWSYk9zcLPB-FIjh9wCplyuXNHivOgjDxnd2jKqGoEegDFNEOCIZffcP-nAjRmqu8ltdZ0O2qDei8qjiosZVgzfU9AEqLwMrp0MH1uX4TsKHnYTM9PCnn6shJTm7_P4f7NfHsxe_dtlqy-oYUopg774EI7kZjduGyM1oyHE0ctqb-995l3Q7C_Qv29kHhA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858865368</pqid></control><display><type>article</type><title>Selection for Mitochondrial Quality Drives Evolution of the Germline</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Radzvilavicius, Arunas L ; Hadjivasiliou, Zena ; Pomiankowski, Andrew ; Lane, Nick</creator><contributor>Kirkwood, Thomas</contributor><creatorcontrib>Radzvilavicius, Arunas L ; Hadjivasiliou, Zena ; Pomiankowski, Andrew ; Lane, Nick ; Kirkwood, Thomas</creatorcontrib><description>The origin of the germline-soma distinction is a fundamental unsolved question. Plants and basal metazoans do not have a germline but generate gametes from pluripotent stem cells in somatic tissues (somatic gametogenesis). In contrast, most bilaterians sequester a dedicated germline early in development. We develop an evolutionary model which shows that selection for mitochondrial quality drives germline evolution. In organisms with low mitochondrial replication error rates, segregation of mutations over multiple cell divisions generates variation, allowing selection to optimize gamete quality through somatic gametogenesis. Higher mutation rates promote early germline sequestration. We also consider how oogamy (a large female gamete packed with mitochondria) alters selection on the germline. Oogamy is beneficial as it reduces mitochondrial segregation in early development, improving adult fitness by restricting variation between tissues. But it also limits variation between early-sequestered oocytes, undermining gamete quality. Oocyte variation is restored through proliferation of germline cells, producing more germ cells than strictly needed, explaining the random culling (atresia) of precursor cells in bilaterians. Unlike other models of germline evolution, selection for mitochondrial quality can explain the stability of somatic gametogenesis in plants and basal metazoans, the evolution of oogamy in all plants and animals with tissue differentiation, and the mutational forces driving early germline sequestration in active bilaterians. The origins of predation in motile bilaterians in the Cambrian explosion is likely to have increased rates of tissue turnover and mitochondrial replication errors, in turn driving germline evolution and the emergence of complex developmental processes.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.2000410</identifier><identifier>PMID: 27997535</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Bilateria ; Biological Evolution ; Biology ; Biology and Life Sciences ; Cell division ; Data collection ; Editing ; Evolution ; Female ; Genetics ; Germ Cells ; Life sciences ; Mathematics ; Medicine and Health Sciences ; Metazoa ; Mitochondria ; Mitochondria - genetics ; Mutation ; Oocytes ; Physics ; Physiological aspects ; Probability distribution ; Quality ; Roles ; Selection, Genetic ; Stem cells ; University colleges ; Writing</subject><ispartof>PLoS biology, 2016-12, Vol.14 (12), p.e2000410-e2000410</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Radzvilavicius AL, Hadjivasiliou Z, Pomiankowski A, Lane N (2016) Selection for Mitochondrial Quality Drives Evolution of the Germline. PLoS Biol 14(12): e2000410. doi:10.1371/journal.pbio.2000410</rights><rights>2016 Radzvilavicius et al 2016 Radzvilavicius et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Radzvilavicius AL, Hadjivasiliou Z, Pomiankowski A, Lane N (2016) Selection for Mitochondrial Quality Drives Evolution of the Germline. PLoS Biol 14(12): e2000410. doi:10.1371/journal.pbio.2000410</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c728t-d5dd7b5701f8557deba670f9688532d3ee79fbafe71e3e242871361eb0817b663</citedby><cites>FETCH-LOGICAL-c728t-d5dd7b5701f8557deba670f9688532d3ee79fbafe71e3e242871361eb0817b663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5172535/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5172535/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27997535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kirkwood, Thomas</contributor><creatorcontrib>Radzvilavicius, Arunas L</creatorcontrib><creatorcontrib>Hadjivasiliou, Zena</creatorcontrib><creatorcontrib>Pomiankowski, Andrew</creatorcontrib><creatorcontrib>Lane, Nick</creatorcontrib><title>Selection for Mitochondrial Quality Drives Evolution of the Germline</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>The origin of the germline-soma distinction is a fundamental unsolved question. Plants and basal metazoans do not have a germline but generate gametes from pluripotent stem cells in somatic tissues (somatic gametogenesis). In contrast, most bilaterians sequester a dedicated germline early in development. We develop an evolutionary model which shows that selection for mitochondrial quality drives germline evolution. In organisms with low mitochondrial replication error rates, segregation of mutations over multiple cell divisions generates variation, allowing selection to optimize gamete quality through somatic gametogenesis. Higher mutation rates promote early germline sequestration. We also consider how oogamy (a large female gamete packed with mitochondria) alters selection on the germline. Oogamy is beneficial as it reduces mitochondrial segregation in early development, improving adult fitness by restricting variation between tissues. But it also limits variation between early-sequestered oocytes, undermining gamete quality. Oocyte variation is restored through proliferation of germline cells, producing more germ cells than strictly needed, explaining the random culling (atresia) of precursor cells in bilaterians. Unlike other models of germline evolution, selection for mitochondrial quality can explain the stability of somatic gametogenesis in plants and basal metazoans, the evolution of oogamy in all plants and animals with tissue differentiation, and the mutational forces driving early germline sequestration in active bilaterians. The origins of predation in motile bilaterians in the Cambrian explosion is likely to have increased rates of tissue turnover and mitochondrial replication errors, in turn driving germline evolution and the emergence of complex developmental processes.</description><subject>Animals</subject><subject>Bilateria</subject><subject>Biological Evolution</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Cell division</subject><subject>Data collection</subject><subject>Editing</subject><subject>Evolution</subject><subject>Female</subject><subject>Genetics</subject><subject>Germ Cells</subject><subject>Life sciences</subject><subject>Mathematics</subject><subject>Medicine and Health Sciences</subject><subject>Metazoa</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mutation</subject><subject>Oocytes</subject><subject>Physics</subject><subject>Physiological aspects</subject><subject>Probability distribution</subject><subject>Quality</subject><subject>Roles</subject><subject>Selection, Genetic</subject><subject>Stem cells</subject><subject>University colleges</subject><subject>Writing</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01vEzEQhlcIREvhHyBYiQscEvyxXnsvlaq2lEiFCgpcLa89Thw562DvVvTf4zTbqkE9FPlga_zMO6_HmqJ4jdEUU44_LsMQO-Wn69aFKUEIVRg9KfYxq9iEC8Ge3jvvFS9SWiJESEPE82KP8KbhjLL94uQSPOjeha60IZZfXB_0InQmOuXLb4Pyrr8uT6K7glSeXgU_3KDBlv0CyjOIK-86eFk8s8oneDXuB8XPT6c_jj9Pzi_OZsdH5xPNiegnhhnDW8YRtoIxbqBVNUe2qbNDSgwF4I1tlQWOgQKpiOCY1hhaJDBv65oeFG-3umsfkhwbkCQWTIia0VpkYrYlTFBLuY5upeK1DMrJm0CIc6li77QHabK-bpFGLbaVoLrVlDc1bZXAJteCrHU4VhvaFRgNXR-V3xHdvencQs7DlWSYk9zcLPB-FIjh9wCplyuXNHivOgjDxnd2jKqGoEegDFNEOCIZffcP-nAjRmqu8ltdZ0O2qDei8qjiosZVgzfU9AEqLwMrp0MH1uX4TsKHnYTM9PCnn6shJTm7_P4f7NfHsxe_dtlqy-oYUopg774EI7kZjduGyM1oyHE0ctqb-995l3Q7C_Qv29kHhA</recordid><startdate>20161220</startdate><enddate>20161220</enddate><creator>Radzvilavicius, Arunas L</creator><creator>Hadjivasiliou, Zena</creator><creator>Pomiankowski, Andrew</creator><creator>Lane, Nick</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20161220</creationdate><title>Selection for Mitochondrial Quality Drives Evolution of the Germline</title><author>Radzvilavicius, Arunas L ; Hadjivasiliou, Zena ; Pomiankowski, Andrew ; Lane, Nick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c728t-d5dd7b5701f8557deba670f9688532d3ee79fbafe71e3e242871361eb0817b663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Bilateria</topic><topic>Biological Evolution</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Cell division</topic><topic>Data collection</topic><topic>Editing</topic><topic>Evolution</topic><topic>Female</topic><topic>Genetics</topic><topic>Germ Cells</topic><topic>Life sciences</topic><topic>Mathematics</topic><topic>Medicine and Health Sciences</topic><topic>Metazoa</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mutation</topic><topic>Oocytes</topic><topic>Physics</topic><topic>Physiological aspects</topic><topic>Probability distribution</topic><topic>Quality</topic><topic>Roles</topic><topic>Selection, Genetic</topic><topic>Stem cells</topic><topic>University colleges</topic><topic>Writing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radzvilavicius, Arunas L</creatorcontrib><creatorcontrib>Hadjivasiliou, Zena</creatorcontrib><creatorcontrib>Pomiankowski, Andrew</creatorcontrib><creatorcontrib>Lane, Nick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radzvilavicius, Arunas L</au><au>Hadjivasiliou, Zena</au><au>Pomiankowski, Andrew</au><au>Lane, Nick</au><au>Kirkwood, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection for Mitochondrial Quality Drives Evolution of the Germline</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2016-12-20</date><risdate>2016</risdate><volume>14</volume><issue>12</issue><spage>e2000410</spage><epage>e2000410</epage><pages>e2000410-e2000410</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>The origin of the germline-soma distinction is a fundamental unsolved question. Plants and basal metazoans do not have a germline but generate gametes from pluripotent stem cells in somatic tissues (somatic gametogenesis). In contrast, most bilaterians sequester a dedicated germline early in development. We develop an evolutionary model which shows that selection for mitochondrial quality drives germline evolution. In organisms with low mitochondrial replication error rates, segregation of mutations over multiple cell divisions generates variation, allowing selection to optimize gamete quality through somatic gametogenesis. Higher mutation rates promote early germline sequestration. We also consider how oogamy (a large female gamete packed with mitochondria) alters selection on the germline. Oogamy is beneficial as it reduces mitochondrial segregation in early development, improving adult fitness by restricting variation between tissues. But it also limits variation between early-sequestered oocytes, undermining gamete quality. Oocyte variation is restored through proliferation of germline cells, producing more germ cells than strictly needed, explaining the random culling (atresia) of precursor cells in bilaterians. Unlike other models of germline evolution, selection for mitochondrial quality can explain the stability of somatic gametogenesis in plants and basal metazoans, the evolution of oogamy in all plants and animals with tissue differentiation, and the mutational forces driving early germline sequestration in active bilaterians. The origins of predation in motile bilaterians in the Cambrian explosion is likely to have increased rates of tissue turnover and mitochondrial replication errors, in turn driving germline evolution and the emergence of complex developmental processes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27997535</pmid><doi>10.1371/journal.pbio.2000410</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2016-12, Vol.14 (12), p.e2000410-e2000410 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_1858865368 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Bilateria Biological Evolution Biology Biology and Life Sciences Cell division Data collection Editing Evolution Female Genetics Germ Cells Life sciences Mathematics Medicine and Health Sciences Metazoa Mitochondria Mitochondria - genetics Mutation Oocytes Physics Physiological aspects Probability distribution Quality Roles Selection, Genetic Stem cells University colleges Writing |
title | Selection for Mitochondrial Quality Drives Evolution of the Germline |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20for%20Mitochondrial%20Quality%20Drives%20Evolution%20of%20the%20Germline&rft.jtitle=PLoS%20biology&rft.au=Radzvilavicius,%20Arunas%20L&rft.date=2016-12-20&rft.volume=14&rft.issue=12&rft.spage=e2000410&rft.epage=e2000410&rft.pages=e2000410-e2000410&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.2000410&rft_dat=%3Cgale_plos_%3EA478614918%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1858865368&rft_id=info:pmid/27997535&rft_galeid=A478614918&rft_doaj_id=oai_doaj_org_article_d428cb0c0b1f483cbc37963ba81d663e&rfr_iscdi=true |