Selection for Mitochondrial Quality Drives Evolution of the Germline

The origin of the germline-soma distinction is a fundamental unsolved question. Plants and basal metazoans do not have a germline but generate gametes from pluripotent stem cells in somatic tissues (somatic gametogenesis). In contrast, most bilaterians sequester a dedicated germline early in develop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2016-12, Vol.14 (12), p.e2000410-e2000410
Hauptverfasser: Radzvilavicius, Arunas L, Hadjivasiliou, Zena, Pomiankowski, Andrew, Lane, Nick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2000410
container_issue 12
container_start_page e2000410
container_title PLoS biology
container_volume 14
creator Radzvilavicius, Arunas L
Hadjivasiliou, Zena
Pomiankowski, Andrew
Lane, Nick
description The origin of the germline-soma distinction is a fundamental unsolved question. Plants and basal metazoans do not have a germline but generate gametes from pluripotent stem cells in somatic tissues (somatic gametogenesis). In contrast, most bilaterians sequester a dedicated germline early in development. We develop an evolutionary model which shows that selection for mitochondrial quality drives germline evolution. In organisms with low mitochondrial replication error rates, segregation of mutations over multiple cell divisions generates variation, allowing selection to optimize gamete quality through somatic gametogenesis. Higher mutation rates promote early germline sequestration. We also consider how oogamy (a large female gamete packed with mitochondria) alters selection on the germline. Oogamy is beneficial as it reduces mitochondrial segregation in early development, improving adult fitness by restricting variation between tissues. But it also limits variation between early-sequestered oocytes, undermining gamete quality. Oocyte variation is restored through proliferation of germline cells, producing more germ cells than strictly needed, explaining the random culling (atresia) of precursor cells in bilaterians. Unlike other models of germline evolution, selection for mitochondrial quality can explain the stability of somatic gametogenesis in plants and basal metazoans, the evolution of oogamy in all plants and animals with tissue differentiation, and the mutational forces driving early germline sequestration in active bilaterians. The origins of predation in motile bilaterians in the Cambrian explosion is likely to have increased rates of tissue turnover and mitochondrial replication errors, in turn driving germline evolution and the emergence of complex developmental processes.
doi_str_mv 10.1371/journal.pbio.2000410
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1858865368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478614918</galeid><doaj_id>oai_doaj_org_article_d428cb0c0b1f483cbc37963ba81d663e</doaj_id><sourcerecordid>A478614918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c728t-d5dd7b5701f8557deba670f9688532d3ee79fbafe71e3e242871361eb0817b663</originalsourceid><addsrcrecordid>eNqVk01vEzEQhlcIREvhHyBYiQscEvyxXnsvlaq2lEiFCgpcLa89Thw562DvVvTf4zTbqkE9FPlga_zMO6_HmqJ4jdEUU44_LsMQO-Wn69aFKUEIVRg9KfYxq9iEC8Ge3jvvFS9SWiJESEPE82KP8KbhjLL94uQSPOjeha60IZZfXB_0InQmOuXLb4Pyrr8uT6K7glSeXgU_3KDBlv0CyjOIK-86eFk8s8oneDXuB8XPT6c_jj9Pzi_OZsdH5xPNiegnhhnDW8YRtoIxbqBVNUe2qbNDSgwF4I1tlQWOgQKpiOCY1hhaJDBv65oeFG-3umsfkhwbkCQWTIia0VpkYrYlTFBLuY5upeK1DMrJm0CIc6li77QHabK-bpFGLbaVoLrVlDc1bZXAJteCrHU4VhvaFRgNXR-V3xHdvencQs7DlWSYk9zcLPB-FIjh9wCplyuXNHivOgjDxnd2jKqGoEegDFNEOCIZffcP-nAjRmqu8ltdZ0O2qDei8qjiosZVgzfU9AEqLwMrp0MH1uX4TsKHnYTM9PCnn6shJTm7_P4f7NfHsxe_dtlqy-oYUopg774EI7kZjduGyM1oyHE0ctqb-995l3Q7C_Qv29kHhA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858865368</pqid></control><display><type>article</type><title>Selection for Mitochondrial Quality Drives Evolution of the Germline</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Radzvilavicius, Arunas L ; Hadjivasiliou, Zena ; Pomiankowski, Andrew ; Lane, Nick</creator><contributor>Kirkwood, Thomas</contributor><creatorcontrib>Radzvilavicius, Arunas L ; Hadjivasiliou, Zena ; Pomiankowski, Andrew ; Lane, Nick ; Kirkwood, Thomas</creatorcontrib><description>The origin of the germline-soma distinction is a fundamental unsolved question. Plants and basal metazoans do not have a germline but generate gametes from pluripotent stem cells in somatic tissues (somatic gametogenesis). In contrast, most bilaterians sequester a dedicated germline early in development. We develop an evolutionary model which shows that selection for mitochondrial quality drives germline evolution. In organisms with low mitochondrial replication error rates, segregation of mutations over multiple cell divisions generates variation, allowing selection to optimize gamete quality through somatic gametogenesis. Higher mutation rates promote early germline sequestration. We also consider how oogamy (a large female gamete packed with mitochondria) alters selection on the germline. Oogamy is beneficial as it reduces mitochondrial segregation in early development, improving adult fitness by restricting variation between tissues. But it also limits variation between early-sequestered oocytes, undermining gamete quality. Oocyte variation is restored through proliferation of germline cells, producing more germ cells than strictly needed, explaining the random culling (atresia) of precursor cells in bilaterians. Unlike other models of germline evolution, selection for mitochondrial quality can explain the stability of somatic gametogenesis in plants and basal metazoans, the evolution of oogamy in all plants and animals with tissue differentiation, and the mutational forces driving early germline sequestration in active bilaterians. The origins of predation in motile bilaterians in the Cambrian explosion is likely to have increased rates of tissue turnover and mitochondrial replication errors, in turn driving germline evolution and the emergence of complex developmental processes.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.2000410</identifier><identifier>PMID: 27997535</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Bilateria ; Biological Evolution ; Biology ; Biology and Life Sciences ; Cell division ; Data collection ; Editing ; Evolution ; Female ; Genetics ; Germ Cells ; Life sciences ; Mathematics ; Medicine and Health Sciences ; Metazoa ; Mitochondria ; Mitochondria - genetics ; Mutation ; Oocytes ; Physics ; Physiological aspects ; Probability distribution ; Quality ; Roles ; Selection, Genetic ; Stem cells ; University colleges ; Writing</subject><ispartof>PLoS biology, 2016-12, Vol.14 (12), p.e2000410-e2000410</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Radzvilavicius AL, Hadjivasiliou Z, Pomiankowski A, Lane N (2016) Selection for Mitochondrial Quality Drives Evolution of the Germline. PLoS Biol 14(12): e2000410. doi:10.1371/journal.pbio.2000410</rights><rights>2016 Radzvilavicius et al 2016 Radzvilavicius et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Radzvilavicius AL, Hadjivasiliou Z, Pomiankowski A, Lane N (2016) Selection for Mitochondrial Quality Drives Evolution of the Germline. PLoS Biol 14(12): e2000410. doi:10.1371/journal.pbio.2000410</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c728t-d5dd7b5701f8557deba670f9688532d3ee79fbafe71e3e242871361eb0817b663</citedby><cites>FETCH-LOGICAL-c728t-d5dd7b5701f8557deba670f9688532d3ee79fbafe71e3e242871361eb0817b663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5172535/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5172535/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27997535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kirkwood, Thomas</contributor><creatorcontrib>Radzvilavicius, Arunas L</creatorcontrib><creatorcontrib>Hadjivasiliou, Zena</creatorcontrib><creatorcontrib>Pomiankowski, Andrew</creatorcontrib><creatorcontrib>Lane, Nick</creatorcontrib><title>Selection for Mitochondrial Quality Drives Evolution of the Germline</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>The origin of the germline-soma distinction is a fundamental unsolved question. Plants and basal metazoans do not have a germline but generate gametes from pluripotent stem cells in somatic tissues (somatic gametogenesis). In contrast, most bilaterians sequester a dedicated germline early in development. We develop an evolutionary model which shows that selection for mitochondrial quality drives germline evolution. In organisms with low mitochondrial replication error rates, segregation of mutations over multiple cell divisions generates variation, allowing selection to optimize gamete quality through somatic gametogenesis. Higher mutation rates promote early germline sequestration. We also consider how oogamy (a large female gamete packed with mitochondria) alters selection on the germline. Oogamy is beneficial as it reduces mitochondrial segregation in early development, improving adult fitness by restricting variation between tissues. But it also limits variation between early-sequestered oocytes, undermining gamete quality. Oocyte variation is restored through proliferation of germline cells, producing more germ cells than strictly needed, explaining the random culling (atresia) of precursor cells in bilaterians. Unlike other models of germline evolution, selection for mitochondrial quality can explain the stability of somatic gametogenesis in plants and basal metazoans, the evolution of oogamy in all plants and animals with tissue differentiation, and the mutational forces driving early germline sequestration in active bilaterians. The origins of predation in motile bilaterians in the Cambrian explosion is likely to have increased rates of tissue turnover and mitochondrial replication errors, in turn driving germline evolution and the emergence of complex developmental processes.</description><subject>Animals</subject><subject>Bilateria</subject><subject>Biological Evolution</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Cell division</subject><subject>Data collection</subject><subject>Editing</subject><subject>Evolution</subject><subject>Female</subject><subject>Genetics</subject><subject>Germ Cells</subject><subject>Life sciences</subject><subject>Mathematics</subject><subject>Medicine and Health Sciences</subject><subject>Metazoa</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mutation</subject><subject>Oocytes</subject><subject>Physics</subject><subject>Physiological aspects</subject><subject>Probability distribution</subject><subject>Quality</subject><subject>Roles</subject><subject>Selection, Genetic</subject><subject>Stem cells</subject><subject>University colleges</subject><subject>Writing</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01vEzEQhlcIREvhHyBYiQscEvyxXnsvlaq2lEiFCgpcLa89Thw562DvVvTf4zTbqkE9FPlga_zMO6_HmqJ4jdEUU44_LsMQO-Wn69aFKUEIVRg9KfYxq9iEC8Ge3jvvFS9SWiJESEPE82KP8KbhjLL94uQSPOjeha60IZZfXB_0InQmOuXLb4Pyrr8uT6K7glSeXgU_3KDBlv0CyjOIK-86eFk8s8oneDXuB8XPT6c_jj9Pzi_OZsdH5xPNiegnhhnDW8YRtoIxbqBVNUe2qbNDSgwF4I1tlQWOgQKpiOCY1hhaJDBv65oeFG-3umsfkhwbkCQWTIia0VpkYrYlTFBLuY5upeK1DMrJm0CIc6li77QHabK-bpFGLbaVoLrVlDc1bZXAJteCrHU4VhvaFRgNXR-V3xHdvencQs7DlWSYk9zcLPB-FIjh9wCplyuXNHivOgjDxnd2jKqGoEegDFNEOCIZffcP-nAjRmqu8ltdZ0O2qDei8qjiosZVgzfU9AEqLwMrp0MH1uX4TsKHnYTM9PCnn6shJTm7_P4f7NfHsxe_dtlqy-oYUopg774EI7kZjduGyM1oyHE0ctqb-995l3Q7C_Qv29kHhA</recordid><startdate>20161220</startdate><enddate>20161220</enddate><creator>Radzvilavicius, Arunas L</creator><creator>Hadjivasiliou, Zena</creator><creator>Pomiankowski, Andrew</creator><creator>Lane, Nick</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20161220</creationdate><title>Selection for Mitochondrial Quality Drives Evolution of the Germline</title><author>Radzvilavicius, Arunas L ; Hadjivasiliou, Zena ; Pomiankowski, Andrew ; Lane, Nick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c728t-d5dd7b5701f8557deba670f9688532d3ee79fbafe71e3e242871361eb0817b663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Bilateria</topic><topic>Biological Evolution</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Cell division</topic><topic>Data collection</topic><topic>Editing</topic><topic>Evolution</topic><topic>Female</topic><topic>Genetics</topic><topic>Germ Cells</topic><topic>Life sciences</topic><topic>Mathematics</topic><topic>Medicine and Health Sciences</topic><topic>Metazoa</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mutation</topic><topic>Oocytes</topic><topic>Physics</topic><topic>Physiological aspects</topic><topic>Probability distribution</topic><topic>Quality</topic><topic>Roles</topic><topic>Selection, Genetic</topic><topic>Stem cells</topic><topic>University colleges</topic><topic>Writing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radzvilavicius, Arunas L</creatorcontrib><creatorcontrib>Hadjivasiliou, Zena</creatorcontrib><creatorcontrib>Pomiankowski, Andrew</creatorcontrib><creatorcontrib>Lane, Nick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radzvilavicius, Arunas L</au><au>Hadjivasiliou, Zena</au><au>Pomiankowski, Andrew</au><au>Lane, Nick</au><au>Kirkwood, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection for Mitochondrial Quality Drives Evolution of the Germline</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2016-12-20</date><risdate>2016</risdate><volume>14</volume><issue>12</issue><spage>e2000410</spage><epage>e2000410</epage><pages>e2000410-e2000410</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>The origin of the germline-soma distinction is a fundamental unsolved question. Plants and basal metazoans do not have a germline but generate gametes from pluripotent stem cells in somatic tissues (somatic gametogenesis). In contrast, most bilaterians sequester a dedicated germline early in development. We develop an evolutionary model which shows that selection for mitochondrial quality drives germline evolution. In organisms with low mitochondrial replication error rates, segregation of mutations over multiple cell divisions generates variation, allowing selection to optimize gamete quality through somatic gametogenesis. Higher mutation rates promote early germline sequestration. We also consider how oogamy (a large female gamete packed with mitochondria) alters selection on the germline. Oogamy is beneficial as it reduces mitochondrial segregation in early development, improving adult fitness by restricting variation between tissues. But it also limits variation between early-sequestered oocytes, undermining gamete quality. Oocyte variation is restored through proliferation of germline cells, producing more germ cells than strictly needed, explaining the random culling (atresia) of precursor cells in bilaterians. Unlike other models of germline evolution, selection for mitochondrial quality can explain the stability of somatic gametogenesis in plants and basal metazoans, the evolution of oogamy in all plants and animals with tissue differentiation, and the mutational forces driving early germline sequestration in active bilaterians. The origins of predation in motile bilaterians in the Cambrian explosion is likely to have increased rates of tissue turnover and mitochondrial replication errors, in turn driving germline evolution and the emergence of complex developmental processes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27997535</pmid><doi>10.1371/journal.pbio.2000410</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2016-12, Vol.14 (12), p.e2000410-e2000410
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_1858865368
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Bilateria
Biological Evolution
Biology
Biology and Life Sciences
Cell division
Data collection
Editing
Evolution
Female
Genetics
Germ Cells
Life sciences
Mathematics
Medicine and Health Sciences
Metazoa
Mitochondria
Mitochondria - genetics
Mutation
Oocytes
Physics
Physiological aspects
Probability distribution
Quality
Roles
Selection, Genetic
Stem cells
University colleges
Writing
title Selection for Mitochondrial Quality Drives Evolution of the Germline
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20for%20Mitochondrial%20Quality%20Drives%20Evolution%20of%20the%20Germline&rft.jtitle=PLoS%20biology&rft.au=Radzvilavicius,%20Arunas%20L&rft.date=2016-12-20&rft.volume=14&rft.issue=12&rft.spage=e2000410&rft.epage=e2000410&rft.pages=e2000410-e2000410&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.2000410&rft_dat=%3Cgale_plos_%3EA478614918%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1858865368&rft_id=info:pmid/27997535&rft_galeid=A478614918&rft_doaj_id=oai_doaj_org_article_d428cb0c0b1f483cbc37963ba81d663e&rfr_iscdi=true