Income in Multiple Sclerosis Patients with Different Disease Phenotypes

Multiple sclerosis (MS) is a disease with profound heterogeneity in clinical course. To analyze sources and levels of income among MS patients in relation to disease phenotype with a special focus on identifying differences/similarities between primary progressive MS (PPMS) and secondary progressive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-01, Vol.12 (1), p.e0169460-e0169460
Hauptverfasser: Kavaliunas, Andrius, Manouchehrinia, Ali, Danylaite Karrenbauer, Virginija, Gyllensten, Hanna, Glaser, Anna, Alexanderson, Kristina, Hillert, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0169460
container_issue 1
container_start_page e0169460
container_title PloS one
container_volume 12
creator Kavaliunas, Andrius
Manouchehrinia, Ali
Danylaite Karrenbauer, Virginija
Gyllensten, Hanna
Glaser, Anna
Alexanderson, Kristina
Hillert, Jan
description Multiple sclerosis (MS) is a disease with profound heterogeneity in clinical course. To analyze sources and levels of income among MS patients in relation to disease phenotype with a special focus on identifying differences/similarities between primary progressive MS (PPMS) and secondary progressive MS (SPMS). A total of 6890 MS patients aged 21-64 years and living in Sweden in 2010 were identified for this cross-sectional study. Descriptive statistics, logistic, truncated linear, and zero-inflated negative binomial regression models were used to estimate differences in income between SPMS, PPMS and relapsing-remitting MS (RRMS) patients. RRMS patients earned almost twice as much as PPMS and SPMS patients (on average SEK 204,500, SEK 114,500, and SEK 79,800 in 2010, respectively). The difference in earnings between PPMS and SPMS was not statistically significant when analyzed with multivariable regression. The estimated odds ratio for PPMS patients to have income from earnings was not significantly different from SPMS patients (95% CI 0.98 to 1.59). PPMS and RRMS patients were less likely to receive benefits when compared to SPMS patients (by 6% and 27% lower, respectively). Our findings argue for similarities between PPMS and SPMS and highlight the socioeconomic importance of preventing RRMS patients convert to SPMS.
doi_str_mv 10.1371/journal.pone.0169460
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1858089308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477293875</galeid><doaj_id>oai_doaj_org_article_a8b17cb8227e4b9c9e1306587ce67c15</doaj_id><sourcerecordid>A477293875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c763t-99c0d4169c5bd84d1066604f66fc1057608140da545dda56881a211eea222f2f3</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoqXwDxBEQkJw2MVfcewLUlWgrFTUigJXy3Emu16SOMQOpf8eh02rDeqhiuSMx8-8mhl7kuQ5RktMc_xu64a-1fWycy0sEeaScfQgOcSSkgUniD7csw-SJ95vEcqo4PxxckAEEhhzepicrlrjGkhtm34Z6mC7GtJLU0PvvPXphQ4W2uDTKxs26QdbVdDHfbQ8aA_pxQZaF6478E-TR5WuPTyb_kfJ908fv518Xpydn65Ojs8WJuc0LKQ0qGQxWZMVpWAlRpxzxCrOK4NRlvOYF0OlzlhWxpULgTXBGEATQipS0aPk5U63q51XUw-8wiKLJUmKRCRWO6J0equ63ja6v1ZOW_XP4fq10n2wsUalRYFzUwhCcmCFNBIwRTwTuQGeG5xFrcVOy19BNxQztcn1M1qgmJQx8ci_n7IbigZKE3vV63oWNj9p7Uat3W-VEYpplkeBN5NA734N4INqrDdQ17oFN4x1ckGRZBjdB8WMS4HGMl79h97duIla69gb21YupmhGUXXM8pxIKvJRa3kHFb8SGmviW6xs9M8C3s4CIhPgT1jrwXu1uvx6f_b8x5x9vcduQNdh4109BOtaPwfZDjTxUfseqtv7wEiNo3TTDTWOkppGKYa92L_L26Cb2aF_AdQFF1k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858089308</pqid></control><display><type>article</type><title>Income in Multiple Sclerosis Patients with Different Disease Phenotypes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SWEPUB Freely available online</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kavaliunas, Andrius ; Manouchehrinia, Ali ; Danylaite Karrenbauer, Virginija ; Gyllensten, Hanna ; Glaser, Anna ; Alexanderson, Kristina ; Hillert, Jan</creator><contributor>Aktas, Orhan</contributor><creatorcontrib>Kavaliunas, Andrius ; Manouchehrinia, Ali ; Danylaite Karrenbauer, Virginija ; Gyllensten, Hanna ; Glaser, Anna ; Alexanderson, Kristina ; Hillert, Jan ; Aktas, Orhan</creatorcontrib><description>Multiple sclerosis (MS) is a disease with profound heterogeneity in clinical course. To analyze sources and levels of income among MS patients in relation to disease phenotype with a special focus on identifying differences/similarities between primary progressive MS (PPMS) and secondary progressive MS (SPMS). A total of 6890 MS patients aged 21-64 years and living in Sweden in 2010 were identified for this cross-sectional study. Descriptive statistics, logistic, truncated linear, and zero-inflated negative binomial regression models were used to estimate differences in income between SPMS, PPMS and relapsing-remitting MS (RRMS) patients. RRMS patients earned almost twice as much as PPMS and SPMS patients (on average SEK 204,500, SEK 114,500, and SEK 79,800 in 2010, respectively). The difference in earnings between PPMS and SPMS was not statistically significant when analyzed with multivariable regression. The estimated odds ratio for PPMS patients to have income from earnings was not significantly different from SPMS patients (95% CI 0.98 to 1.59). PPMS and RRMS patients were less likely to receive benefits when compared to SPMS patients (by 6% and 27% lower, respectively). Our findings argue for similarities between PPMS and SPMS and highlight the socioeconomic importance of preventing RRMS patients convert to SPMS.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0169460</identifier><identifier>PMID: 28081163</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Age ; Analogies ; Biology and Life Sciences ; Clinical trials ; Comparative analysis ; Country of birth ; Disease ; Earth Sciences ; Economic aspects ; Education ; Estimates ; Female ; Genotype &amp; phenotype ; Humans ; Income ; Male ; Medicine and Health Sciences ; Middle Aged ; Models, Economic ; Multiple sclerosis ; Multiple Sclerosis - economics ; Neurology ; Neurosciences ; Patients ; People and Places ; Phenotype ; Phenotypes ; Physical Sciences ; Population ; Profits ; Ratios ; Regression analysis ; Regression models ; Research and Analysis Methods ; Socio-economic aspects ; Socioeconomic Factors ; Statistical analysis ; Studies ; Variables ; Wages and salaries</subject><ispartof>PloS one, 2017-01, Vol.12 (1), p.e0169460-e0169460</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Kavaliunas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Kavaliunas et al 2017 Kavaliunas et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c763t-99c0d4169c5bd84d1066604f66fc1057608140da545dda56881a211eea222f2f3</citedby><cites>FETCH-LOGICAL-c763t-99c0d4169c5bd84d1066604f66fc1057608140da545dda56881a211eea222f2f3</cites><orcidid>0000-0003-4638-3230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5231357/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5231357/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28081163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:135043007$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Aktas, Orhan</contributor><creatorcontrib>Kavaliunas, Andrius</creatorcontrib><creatorcontrib>Manouchehrinia, Ali</creatorcontrib><creatorcontrib>Danylaite Karrenbauer, Virginija</creatorcontrib><creatorcontrib>Gyllensten, Hanna</creatorcontrib><creatorcontrib>Glaser, Anna</creatorcontrib><creatorcontrib>Alexanderson, Kristina</creatorcontrib><creatorcontrib>Hillert, Jan</creatorcontrib><title>Income in Multiple Sclerosis Patients with Different Disease Phenotypes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Multiple sclerosis (MS) is a disease with profound heterogeneity in clinical course. To analyze sources and levels of income among MS patients in relation to disease phenotype with a special focus on identifying differences/similarities between primary progressive MS (PPMS) and secondary progressive MS (SPMS). A total of 6890 MS patients aged 21-64 years and living in Sweden in 2010 were identified for this cross-sectional study. Descriptive statistics, logistic, truncated linear, and zero-inflated negative binomial regression models were used to estimate differences in income between SPMS, PPMS and relapsing-remitting MS (RRMS) patients. RRMS patients earned almost twice as much as PPMS and SPMS patients (on average SEK 204,500, SEK 114,500, and SEK 79,800 in 2010, respectively). The difference in earnings between PPMS and SPMS was not statistically significant when analyzed with multivariable regression. The estimated odds ratio for PPMS patients to have income from earnings was not significantly different from SPMS patients (95% CI 0.98 to 1.59). PPMS and RRMS patients were less likely to receive benefits when compared to SPMS patients (by 6% and 27% lower, respectively). Our findings argue for similarities between PPMS and SPMS and highlight the socioeconomic importance of preventing RRMS patients convert to SPMS.</description><subject>Adult</subject><subject>Age</subject><subject>Analogies</subject><subject>Biology and Life Sciences</subject><subject>Clinical trials</subject><subject>Comparative analysis</subject><subject>Country of birth</subject><subject>Disease</subject><subject>Earth Sciences</subject><subject>Economic aspects</subject><subject>Education</subject><subject>Estimates</subject><subject>Female</subject><subject>Genotype &amp; phenotype</subject><subject>Humans</subject><subject>Income</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>Models, Economic</subject><subject>Multiple sclerosis</subject><subject>Multiple Sclerosis - economics</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Patients</subject><subject>People and Places</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Physical Sciences</subject><subject>Population</subject><subject>Profits</subject><subject>Ratios</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Research and Analysis Methods</subject><subject>Socio-economic aspects</subject><subject>Socioeconomic Factors</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Variables</subject><subject>Wages and salaries</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoqXwDxBEQkJw2MVfcewLUlWgrFTUigJXy3Emu16SOMQOpf8eh02rDeqhiuSMx8-8mhl7kuQ5RktMc_xu64a-1fWycy0sEeaScfQgOcSSkgUniD7csw-SJ95vEcqo4PxxckAEEhhzepicrlrjGkhtm34Z6mC7GtJLU0PvvPXphQ4W2uDTKxs26QdbVdDHfbQ8aA_pxQZaF6478E-TR5WuPTyb_kfJ908fv518Xpydn65Ojs8WJuc0LKQ0qGQxWZMVpWAlRpxzxCrOK4NRlvOYF0OlzlhWxpULgTXBGEATQipS0aPk5U63q51XUw-8wiKLJUmKRCRWO6J0equ63ja6v1ZOW_XP4fq10n2wsUalRYFzUwhCcmCFNBIwRTwTuQGeG5xFrcVOy19BNxQztcn1M1qgmJQx8ci_n7IbigZKE3vV63oWNj9p7Uat3W-VEYpplkeBN5NA734N4INqrDdQ17oFN4x1ckGRZBjdB8WMS4HGMl79h97duIla69gb21YupmhGUXXM8pxIKvJRa3kHFb8SGmviW6xs9M8C3s4CIhPgT1jrwXu1uvx6f_b8x5x9vcduQNdh4109BOtaPwfZDjTxUfseqtv7wEiNo3TTDTWOkppGKYa92L_L26Cb2aF_AdQFF1k</recordid><startdate>20170112</startdate><enddate>20170112</enddate><creator>Kavaliunas, Andrius</creator><creator>Manouchehrinia, Ali</creator><creator>Danylaite Karrenbauer, Virginija</creator><creator>Gyllensten, Hanna</creator><creator>Glaser, Anna</creator><creator>Alexanderson, Kristina</creator><creator>Hillert, Jan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4638-3230</orcidid></search><sort><creationdate>20170112</creationdate><title>Income in Multiple Sclerosis Patients with Different Disease Phenotypes</title><author>Kavaliunas, Andrius ; Manouchehrinia, Ali ; Danylaite Karrenbauer, Virginija ; Gyllensten, Hanna ; Glaser, Anna ; Alexanderson, Kristina ; Hillert, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c763t-99c0d4169c5bd84d1066604f66fc1057608140da545dda56881a211eea222f2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Age</topic><topic>Analogies</topic><topic>Biology and Life Sciences</topic><topic>Clinical trials</topic><topic>Comparative analysis</topic><topic>Country of birth</topic><topic>Disease</topic><topic>Earth Sciences</topic><topic>Economic aspects</topic><topic>Education</topic><topic>Estimates</topic><topic>Female</topic><topic>Genotype &amp; phenotype</topic><topic>Humans</topic><topic>Income</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>Models, Economic</topic><topic>Multiple sclerosis</topic><topic>Multiple Sclerosis - economics</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Patients</topic><topic>People and Places</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Physical Sciences</topic><topic>Population</topic><topic>Profits</topic><topic>Ratios</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Research and Analysis Methods</topic><topic>Socio-economic aspects</topic><topic>Socioeconomic Factors</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Variables</topic><topic>Wages and salaries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kavaliunas, Andrius</creatorcontrib><creatorcontrib>Manouchehrinia, Ali</creatorcontrib><creatorcontrib>Danylaite Karrenbauer, Virginija</creatorcontrib><creatorcontrib>Gyllensten, Hanna</creatorcontrib><creatorcontrib>Glaser, Anna</creatorcontrib><creatorcontrib>Alexanderson, Kristina</creatorcontrib><creatorcontrib>Hillert, Jan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kavaliunas, Andrius</au><au>Manouchehrinia, Ali</au><au>Danylaite Karrenbauer, Virginija</au><au>Gyllensten, Hanna</au><au>Glaser, Anna</au><au>Alexanderson, Kristina</au><au>Hillert, Jan</au><au>Aktas, Orhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Income in Multiple Sclerosis Patients with Different Disease Phenotypes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-01-12</date><risdate>2017</risdate><volume>12</volume><issue>1</issue><spage>e0169460</spage><epage>e0169460</epage><pages>e0169460-e0169460</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Multiple sclerosis (MS) is a disease with profound heterogeneity in clinical course. To analyze sources and levels of income among MS patients in relation to disease phenotype with a special focus on identifying differences/similarities between primary progressive MS (PPMS) and secondary progressive MS (SPMS). A total of 6890 MS patients aged 21-64 years and living in Sweden in 2010 were identified for this cross-sectional study. Descriptive statistics, logistic, truncated linear, and zero-inflated negative binomial regression models were used to estimate differences in income between SPMS, PPMS and relapsing-remitting MS (RRMS) patients. RRMS patients earned almost twice as much as PPMS and SPMS patients (on average SEK 204,500, SEK 114,500, and SEK 79,800 in 2010, respectively). The difference in earnings between PPMS and SPMS was not statistically significant when analyzed with multivariable regression. The estimated odds ratio for PPMS patients to have income from earnings was not significantly different from SPMS patients (95% CI 0.98 to 1.59). PPMS and RRMS patients were less likely to receive benefits when compared to SPMS patients (by 6% and 27% lower, respectively). Our findings argue for similarities between PPMS and SPMS and highlight the socioeconomic importance of preventing RRMS patients convert to SPMS.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28081163</pmid><doi>10.1371/journal.pone.0169460</doi><tpages>e0169460</tpages><orcidid>https://orcid.org/0000-0003-4638-3230</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-01, Vol.12 (1), p.e0169460-e0169460
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1858089308
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SWEPUB Freely available online; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Adult
Age
Analogies
Biology and Life Sciences
Clinical trials
Comparative analysis
Country of birth
Disease
Earth Sciences
Economic aspects
Education
Estimates
Female
Genotype & phenotype
Humans
Income
Male
Medicine and Health Sciences
Middle Aged
Models, Economic
Multiple sclerosis
Multiple Sclerosis - economics
Neurology
Neurosciences
Patients
People and Places
Phenotype
Phenotypes
Physical Sciences
Population
Profits
Ratios
Regression analysis
Regression models
Research and Analysis Methods
Socio-economic aspects
Socioeconomic Factors
Statistical analysis
Studies
Variables
Wages and salaries
title Income in Multiple Sclerosis Patients with Different Disease Phenotypes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A14%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Income%20in%20Multiple%20Sclerosis%20Patients%20with%20Different%20Disease%20Phenotypes&rft.jtitle=PloS%20one&rft.au=Kavaliunas,%20Andrius&rft.date=2017-01-12&rft.volume=12&rft.issue=1&rft.spage=e0169460&rft.epage=e0169460&rft.pages=e0169460-e0169460&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0169460&rft_dat=%3Cgale_plos_%3EA477293875%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1858089308&rft_id=info:pmid/28081163&rft_galeid=A477293875&rft_doaj_id=oai_doaj_org_article_a8b17cb8227e4b9c9e1306587ce67c15&rfr_iscdi=true