Income in Multiple Sclerosis Patients with Different Disease Phenotypes
Multiple sclerosis (MS) is a disease with profound heterogeneity in clinical course. To analyze sources and levels of income among MS patients in relation to disease phenotype with a special focus on identifying differences/similarities between primary progressive MS (PPMS) and secondary progressive...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-01, Vol.12 (1), p.e0169460-e0169460 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0169460 |
---|---|
container_issue | 1 |
container_start_page | e0169460 |
container_title | PloS one |
container_volume | 12 |
creator | Kavaliunas, Andrius Manouchehrinia, Ali Danylaite Karrenbauer, Virginija Gyllensten, Hanna Glaser, Anna Alexanderson, Kristina Hillert, Jan |
description | Multiple sclerosis (MS) is a disease with profound heterogeneity in clinical course.
To analyze sources and levels of income among MS patients in relation to disease phenotype with a special focus on identifying differences/similarities between primary progressive MS (PPMS) and secondary progressive MS (SPMS).
A total of 6890 MS patients aged 21-64 years and living in Sweden in 2010 were identified for this cross-sectional study. Descriptive statistics, logistic, truncated linear, and zero-inflated negative binomial regression models were used to estimate differences in income between SPMS, PPMS and relapsing-remitting MS (RRMS) patients.
RRMS patients earned almost twice as much as PPMS and SPMS patients (on average SEK 204,500, SEK 114,500, and SEK 79,800 in 2010, respectively). The difference in earnings between PPMS and SPMS was not statistically significant when analyzed with multivariable regression. The estimated odds ratio for PPMS patients to have income from earnings was not significantly different from SPMS patients (95% CI 0.98 to 1.59). PPMS and RRMS patients were less likely to receive benefits when compared to SPMS patients (by 6% and 27% lower, respectively).
Our findings argue for similarities between PPMS and SPMS and highlight the socioeconomic importance of preventing RRMS patients convert to SPMS. |
doi_str_mv | 10.1371/journal.pone.0169460 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1858089308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477293875</galeid><doaj_id>oai_doaj_org_article_a8b17cb8227e4b9c9e1306587ce67c15</doaj_id><sourcerecordid>A477293875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c763t-99c0d4169c5bd84d1066604f66fc1057608140da545dda56881a211eea222f2f3</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoqXwDxBEQkJw2MVfcewLUlWgrFTUigJXy3Emu16SOMQOpf8eh02rDeqhiuSMx8-8mhl7kuQ5RktMc_xu64a-1fWycy0sEeaScfQgOcSSkgUniD7csw-SJ95vEcqo4PxxckAEEhhzepicrlrjGkhtm34Z6mC7GtJLU0PvvPXphQ4W2uDTKxs26QdbVdDHfbQ8aA_pxQZaF6478E-TR5WuPTyb_kfJ908fv518Xpydn65Ojs8WJuc0LKQ0qGQxWZMVpWAlRpxzxCrOK4NRlvOYF0OlzlhWxpULgTXBGEATQipS0aPk5U63q51XUw-8wiKLJUmKRCRWO6J0equ63ja6v1ZOW_XP4fq10n2wsUalRYFzUwhCcmCFNBIwRTwTuQGeG5xFrcVOy19BNxQztcn1M1qgmJQx8ci_n7IbigZKE3vV63oWNj9p7Uat3W-VEYpplkeBN5NA734N4INqrDdQ17oFN4x1ckGRZBjdB8WMS4HGMl79h97duIla69gb21YupmhGUXXM8pxIKvJRa3kHFb8SGmviW6xs9M8C3s4CIhPgT1jrwXu1uvx6f_b8x5x9vcduQNdh4109BOtaPwfZDjTxUfseqtv7wEiNo3TTDTWOkppGKYa92L_L26Cb2aF_AdQFF1k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858089308</pqid></control><display><type>article</type><title>Income in Multiple Sclerosis Patients with Different Disease Phenotypes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SWEPUB Freely available online</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kavaliunas, Andrius ; Manouchehrinia, Ali ; Danylaite Karrenbauer, Virginija ; Gyllensten, Hanna ; Glaser, Anna ; Alexanderson, Kristina ; Hillert, Jan</creator><contributor>Aktas, Orhan</contributor><creatorcontrib>Kavaliunas, Andrius ; Manouchehrinia, Ali ; Danylaite Karrenbauer, Virginija ; Gyllensten, Hanna ; Glaser, Anna ; Alexanderson, Kristina ; Hillert, Jan ; Aktas, Orhan</creatorcontrib><description>Multiple sclerosis (MS) is a disease with profound heterogeneity in clinical course.
To analyze sources and levels of income among MS patients in relation to disease phenotype with a special focus on identifying differences/similarities between primary progressive MS (PPMS) and secondary progressive MS (SPMS).
A total of 6890 MS patients aged 21-64 years and living in Sweden in 2010 were identified for this cross-sectional study. Descriptive statistics, logistic, truncated linear, and zero-inflated negative binomial regression models were used to estimate differences in income between SPMS, PPMS and relapsing-remitting MS (RRMS) patients.
RRMS patients earned almost twice as much as PPMS and SPMS patients (on average SEK 204,500, SEK 114,500, and SEK 79,800 in 2010, respectively). The difference in earnings between PPMS and SPMS was not statistically significant when analyzed with multivariable regression. The estimated odds ratio for PPMS patients to have income from earnings was not significantly different from SPMS patients (95% CI 0.98 to 1.59). PPMS and RRMS patients were less likely to receive benefits when compared to SPMS patients (by 6% and 27% lower, respectively).
Our findings argue for similarities between PPMS and SPMS and highlight the socioeconomic importance of preventing RRMS patients convert to SPMS.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0169460</identifier><identifier>PMID: 28081163</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Age ; Analogies ; Biology and Life Sciences ; Clinical trials ; Comparative analysis ; Country of birth ; Disease ; Earth Sciences ; Economic aspects ; Education ; Estimates ; Female ; Genotype & phenotype ; Humans ; Income ; Male ; Medicine and Health Sciences ; Middle Aged ; Models, Economic ; Multiple sclerosis ; Multiple Sclerosis - economics ; Neurology ; Neurosciences ; Patients ; People and Places ; Phenotype ; Phenotypes ; Physical Sciences ; Population ; Profits ; Ratios ; Regression analysis ; Regression models ; Research and Analysis Methods ; Socio-economic aspects ; Socioeconomic Factors ; Statistical analysis ; Studies ; Variables ; Wages and salaries</subject><ispartof>PloS one, 2017-01, Vol.12 (1), p.e0169460-e0169460</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Kavaliunas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Kavaliunas et al 2017 Kavaliunas et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c763t-99c0d4169c5bd84d1066604f66fc1057608140da545dda56881a211eea222f2f3</citedby><cites>FETCH-LOGICAL-c763t-99c0d4169c5bd84d1066604f66fc1057608140da545dda56881a211eea222f2f3</cites><orcidid>0000-0003-4638-3230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5231357/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5231357/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28081163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:135043007$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Aktas, Orhan</contributor><creatorcontrib>Kavaliunas, Andrius</creatorcontrib><creatorcontrib>Manouchehrinia, Ali</creatorcontrib><creatorcontrib>Danylaite Karrenbauer, Virginija</creatorcontrib><creatorcontrib>Gyllensten, Hanna</creatorcontrib><creatorcontrib>Glaser, Anna</creatorcontrib><creatorcontrib>Alexanderson, Kristina</creatorcontrib><creatorcontrib>Hillert, Jan</creatorcontrib><title>Income in Multiple Sclerosis Patients with Different Disease Phenotypes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Multiple sclerosis (MS) is a disease with profound heterogeneity in clinical course.
To analyze sources and levels of income among MS patients in relation to disease phenotype with a special focus on identifying differences/similarities between primary progressive MS (PPMS) and secondary progressive MS (SPMS).
A total of 6890 MS patients aged 21-64 years and living in Sweden in 2010 were identified for this cross-sectional study. Descriptive statistics, logistic, truncated linear, and zero-inflated negative binomial regression models were used to estimate differences in income between SPMS, PPMS and relapsing-remitting MS (RRMS) patients.
RRMS patients earned almost twice as much as PPMS and SPMS patients (on average SEK 204,500, SEK 114,500, and SEK 79,800 in 2010, respectively). The difference in earnings between PPMS and SPMS was not statistically significant when analyzed with multivariable regression. The estimated odds ratio for PPMS patients to have income from earnings was not significantly different from SPMS patients (95% CI 0.98 to 1.59). PPMS and RRMS patients were less likely to receive benefits when compared to SPMS patients (by 6% and 27% lower, respectively).
Our findings argue for similarities between PPMS and SPMS and highlight the socioeconomic importance of preventing RRMS patients convert to SPMS.</description><subject>Adult</subject><subject>Age</subject><subject>Analogies</subject><subject>Biology and Life Sciences</subject><subject>Clinical trials</subject><subject>Comparative analysis</subject><subject>Country of birth</subject><subject>Disease</subject><subject>Earth Sciences</subject><subject>Economic aspects</subject><subject>Education</subject><subject>Estimates</subject><subject>Female</subject><subject>Genotype & phenotype</subject><subject>Humans</subject><subject>Income</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>Models, Economic</subject><subject>Multiple sclerosis</subject><subject>Multiple Sclerosis - economics</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Patients</subject><subject>People and Places</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Physical Sciences</subject><subject>Population</subject><subject>Profits</subject><subject>Ratios</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Research and Analysis Methods</subject><subject>Socio-economic aspects</subject><subject>Socioeconomic Factors</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Variables</subject><subject>Wages and salaries</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoqXwDxBEQkJw2MVfcewLUlWgrFTUigJXy3Emu16SOMQOpf8eh02rDeqhiuSMx8-8mhl7kuQ5RktMc_xu64a-1fWycy0sEeaScfQgOcSSkgUniD7csw-SJ95vEcqo4PxxckAEEhhzepicrlrjGkhtm34Z6mC7GtJLU0PvvPXphQ4W2uDTKxs26QdbVdDHfbQ8aA_pxQZaF6478E-TR5WuPTyb_kfJ908fv518Xpydn65Ojs8WJuc0LKQ0qGQxWZMVpWAlRpxzxCrOK4NRlvOYF0OlzlhWxpULgTXBGEATQipS0aPk5U63q51XUw-8wiKLJUmKRCRWO6J0equ63ja6v1ZOW_XP4fq10n2wsUalRYFzUwhCcmCFNBIwRTwTuQGeG5xFrcVOy19BNxQztcn1M1qgmJQx8ci_n7IbigZKE3vV63oWNj9p7Uat3W-VEYpplkeBN5NA734N4INqrDdQ17oFN4x1ckGRZBjdB8WMS4HGMl79h97duIla69gb21YupmhGUXXM8pxIKvJRa3kHFb8SGmviW6xs9M8C3s4CIhPgT1jrwXu1uvx6f_b8x5x9vcduQNdh4109BOtaPwfZDjTxUfseqtv7wEiNo3TTDTWOkppGKYa92L_L26Cb2aF_AdQFF1k</recordid><startdate>20170112</startdate><enddate>20170112</enddate><creator>Kavaliunas, Andrius</creator><creator>Manouchehrinia, Ali</creator><creator>Danylaite Karrenbauer, Virginija</creator><creator>Gyllensten, Hanna</creator><creator>Glaser, Anna</creator><creator>Alexanderson, Kristina</creator><creator>Hillert, Jan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4638-3230</orcidid></search><sort><creationdate>20170112</creationdate><title>Income in Multiple Sclerosis Patients with Different Disease Phenotypes</title><author>Kavaliunas, Andrius ; Manouchehrinia, Ali ; Danylaite Karrenbauer, Virginija ; Gyllensten, Hanna ; Glaser, Anna ; Alexanderson, Kristina ; Hillert, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c763t-99c0d4169c5bd84d1066604f66fc1057608140da545dda56881a211eea222f2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Age</topic><topic>Analogies</topic><topic>Biology and Life Sciences</topic><topic>Clinical trials</topic><topic>Comparative analysis</topic><topic>Country of birth</topic><topic>Disease</topic><topic>Earth Sciences</topic><topic>Economic aspects</topic><topic>Education</topic><topic>Estimates</topic><topic>Female</topic><topic>Genotype & phenotype</topic><topic>Humans</topic><topic>Income</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>Models, Economic</topic><topic>Multiple sclerosis</topic><topic>Multiple Sclerosis - economics</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Patients</topic><topic>People and Places</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Physical Sciences</topic><topic>Population</topic><topic>Profits</topic><topic>Ratios</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Research and Analysis Methods</topic><topic>Socio-economic aspects</topic><topic>Socioeconomic Factors</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Variables</topic><topic>Wages and salaries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kavaliunas, Andrius</creatorcontrib><creatorcontrib>Manouchehrinia, Ali</creatorcontrib><creatorcontrib>Danylaite Karrenbauer, Virginija</creatorcontrib><creatorcontrib>Gyllensten, Hanna</creatorcontrib><creatorcontrib>Glaser, Anna</creatorcontrib><creatorcontrib>Alexanderson, Kristina</creatorcontrib><creatorcontrib>Hillert, Jan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kavaliunas, Andrius</au><au>Manouchehrinia, Ali</au><au>Danylaite Karrenbauer, Virginija</au><au>Gyllensten, Hanna</au><au>Glaser, Anna</au><au>Alexanderson, Kristina</au><au>Hillert, Jan</au><au>Aktas, Orhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Income in Multiple Sclerosis Patients with Different Disease Phenotypes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-01-12</date><risdate>2017</risdate><volume>12</volume><issue>1</issue><spage>e0169460</spage><epage>e0169460</epage><pages>e0169460-e0169460</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Multiple sclerosis (MS) is a disease with profound heterogeneity in clinical course.
To analyze sources and levels of income among MS patients in relation to disease phenotype with a special focus on identifying differences/similarities between primary progressive MS (PPMS) and secondary progressive MS (SPMS).
A total of 6890 MS patients aged 21-64 years and living in Sweden in 2010 were identified for this cross-sectional study. Descriptive statistics, logistic, truncated linear, and zero-inflated negative binomial regression models were used to estimate differences in income between SPMS, PPMS and relapsing-remitting MS (RRMS) patients.
RRMS patients earned almost twice as much as PPMS and SPMS patients (on average SEK 204,500, SEK 114,500, and SEK 79,800 in 2010, respectively). The difference in earnings between PPMS and SPMS was not statistically significant when analyzed with multivariable regression. The estimated odds ratio for PPMS patients to have income from earnings was not significantly different from SPMS patients (95% CI 0.98 to 1.59). PPMS and RRMS patients were less likely to receive benefits when compared to SPMS patients (by 6% and 27% lower, respectively).
Our findings argue for similarities between PPMS and SPMS and highlight the socioeconomic importance of preventing RRMS patients convert to SPMS.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28081163</pmid><doi>10.1371/journal.pone.0169460</doi><tpages>e0169460</tpages><orcidid>https://orcid.org/0000-0003-4638-3230</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-01, Vol.12 (1), p.e0169460-e0169460 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1858089308 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SWEPUB Freely available online; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adult Age Analogies Biology and Life Sciences Clinical trials Comparative analysis Country of birth Disease Earth Sciences Economic aspects Education Estimates Female Genotype & phenotype Humans Income Male Medicine and Health Sciences Middle Aged Models, Economic Multiple sclerosis Multiple Sclerosis - economics Neurology Neurosciences Patients People and Places Phenotype Phenotypes Physical Sciences Population Profits Ratios Regression analysis Regression models Research and Analysis Methods Socio-economic aspects Socioeconomic Factors Statistical analysis Studies Variables Wages and salaries |
title | Income in Multiple Sclerosis Patients with Different Disease Phenotypes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A14%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Income%20in%20Multiple%20Sclerosis%20Patients%20with%20Different%20Disease%20Phenotypes&rft.jtitle=PloS%20one&rft.au=Kavaliunas,%20Andrius&rft.date=2017-01-12&rft.volume=12&rft.issue=1&rft.spage=e0169460&rft.epage=e0169460&rft.pages=e0169460-e0169460&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0169460&rft_dat=%3Cgale_plos_%3EA477293875%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1858089308&rft_id=info:pmid/28081163&rft_galeid=A477293875&rft_doaj_id=oai_doaj_org_article_a8b17cb8227e4b9c9e1306587ce67c15&rfr_iscdi=true |