Quantification of Local Warming Trend: A Remote Sensing-Based Approach
Understanding the warming trends at local level is critical; and, the development of relevant adaptation and mitigation policies at those levels are quite challenging. Here, our overall goal was to generate local warming trend map at 1 km spatial resolution by using: (i) Moderate Resolution Imaging...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-01, Vol.12 (1), p.e0169423-e0169423 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0169423 |
---|---|
container_issue | 1 |
container_start_page | e0169423 |
container_title | PloS one |
container_volume | 12 |
creator | Rahaman, Khan Rubayet Hassan, Quazi K Chowdhury, Ehsan H |
description | Understanding the warming trends at local level is critical; and, the development of relevant adaptation and mitigation policies at those levels are quite challenging. Here, our overall goal was to generate local warming trend map at 1 km spatial resolution by using: (i) Moderate Resolution Imaging Spectroradiometer (MODIS)-based 8-day composite surface temperature data; (ii) weather station-based yearly average air temperature data; and (iii) air temperature normal (i.e., 30 year average) data over the Canadian province of Alberta during the period 1961-2010. Thus, we analysed the station-based air temperature data in generating relationships between air temperature normal and yearly average air temperature in order to facilitate the selection of year-specific MODIS-based surface temperature data. These MODIS data in conjunction with weather station-based air temperature normal data were then used to model local warming trends. We observed that almost 88% areas of the province experienced warming trends (i.e., up to 1.5°C). The study concluded that remote sensing technology could be useful for delineating generic trends associated with local warming. |
doi_str_mv | 10.1371/journal.pone.0169423 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1857360545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477004695</galeid><doaj_id>oai_doaj_org_article_141caa262322461aa56cea35a1ac32ea</doaj_id><sourcerecordid>A477004695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-3ef1660844755a4377ea59aeb3a5c5e4e647186c65346d8b1c3e704033af1a253</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYqPwDxBEQkJw0eJvJ7tAKhODSpUmtgGX1ql70npK4hInCP49zppNDdrF5Atbx895fT58kuQlJTPKNf1w7bumhnK28zXOCFW5YPxRckxzzqaKEf744HyUPAvhmhDJM6WeJkcsI5plUh8nZ986qFtXOAut83Xqi3TpLZTpT2gqV2_Sqwbr9Uk6Ty-w8i2ml1iHaJ9-goDrdL7bNR7s9nnypIAy4IthnyTfzz5fnX6dLs-_LE7ny6nVTLZTjgVVimRCaClBcK0RZA644iCtRIFKaJopqyQXap2tqOWoiSCcQ0GBST5JXu91d6UPZihBMDTmwhWRoicWe2Lt4drsGldB89d4cObG4JuNgaZ1tkRDBbUATDHOmFAUQCqLwCVQsJzF0yT5OLzWrSpcW6zbBsqR6Pimdluz8b-NjII6Z1Hg3SDQ-F8dhtZULlgsS6jRd33cKuMsViN_ACq1lozkfYpv_kPvL8RAbSDm6urCxxBtL2rmQmtChLrRmt1DxbXGytn4tQoX7SOH9yOHyLT4p91AF4JZXF48nD3_MWbfHrBbhLLdBl92_a8MY1DsQdv4EBos7vpBiekn47Yapp8MM0xGdHt12Ms7p9tR4P8A0S0FaA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1857360545</pqid></control><display><type>article</type><title>Quantification of Local Warming Trend: A Remote Sensing-Based Approach</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Rahaman, Khan Rubayet ; Hassan, Quazi K ; Chowdhury, Ehsan H</creator><contributor>Vadrevu, Krishna Prasad</contributor><creatorcontrib>Rahaman, Khan Rubayet ; Hassan, Quazi K ; Chowdhury, Ehsan H ; Vadrevu, Krishna Prasad</creatorcontrib><description>Understanding the warming trends at local level is critical; and, the development of relevant adaptation and mitigation policies at those levels are quite challenging. Here, our overall goal was to generate local warming trend map at 1 km spatial resolution by using: (i) Moderate Resolution Imaging Spectroradiometer (MODIS)-based 8-day composite surface temperature data; (ii) weather station-based yearly average air temperature data; and (iii) air temperature normal (i.e., 30 year average) data over the Canadian province of Alberta during the period 1961-2010. Thus, we analysed the station-based air temperature data in generating relationships between air temperature normal and yearly average air temperature in order to facilitate the selection of year-specific MODIS-based surface temperature data. These MODIS data in conjunction with weather station-based air temperature normal data were then used to model local warming trends. We observed that almost 88% areas of the province experienced warming trends (i.e., up to 1.5°C). The study concluded that remote sensing technology could be useful for delineating generic trends associated with local warming.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0169423</identifier><identifier>PMID: 28072857</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Air temperature ; Alberta ; Algorithms ; Analysis ; Climate Change ; Computer and Information Sciences ; Datasets ; Earth Sciences ; Engineering and Technology ; Environmental Monitoring ; Ice ; Mitigation ; Models, Theoretical ; MODIS ; People and places ; Physical Sciences ; Remote sensing ; Remote Sensing Technology ; Research and Analysis Methods ; Seasons ; Spatial discrimination ; Spatial resolution ; Spectroradiometers ; Surface temperature ; Temperature ; Temperature data ; Temperature effects ; Trends ; Weather ; Weather stations</subject><ispartof>PloS one, 2017-01, Vol.12 (1), p.e0169423-e0169423</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Rahaman, Hassan. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Rahaman, Hassan 2017 Rahaman, Hassan</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-3ef1660844755a4377ea59aeb3a5c5e4e647186c65346d8b1c3e704033af1a253</citedby><cites>FETCH-LOGICAL-c725t-3ef1660844755a4377ea59aeb3a5c5e4e647186c65346d8b1c3e704033af1a253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5224792/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5224792/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79472,79473</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28072857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Vadrevu, Krishna Prasad</contributor><creatorcontrib>Rahaman, Khan Rubayet</creatorcontrib><creatorcontrib>Hassan, Quazi K</creatorcontrib><creatorcontrib>Chowdhury, Ehsan H</creatorcontrib><title>Quantification of Local Warming Trend: A Remote Sensing-Based Approach</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Understanding the warming trends at local level is critical; and, the development of relevant adaptation and mitigation policies at those levels are quite challenging. Here, our overall goal was to generate local warming trend map at 1 km spatial resolution by using: (i) Moderate Resolution Imaging Spectroradiometer (MODIS)-based 8-day composite surface temperature data; (ii) weather station-based yearly average air temperature data; and (iii) air temperature normal (i.e., 30 year average) data over the Canadian province of Alberta during the period 1961-2010. Thus, we analysed the station-based air temperature data in generating relationships between air temperature normal and yearly average air temperature in order to facilitate the selection of year-specific MODIS-based surface temperature data. These MODIS data in conjunction with weather station-based air temperature normal data were then used to model local warming trends. We observed that almost 88% areas of the province experienced warming trends (i.e., up to 1.5°C). The study concluded that remote sensing technology could be useful for delineating generic trends associated with local warming.</description><subject>Air temperature</subject><subject>Alberta</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Climate Change</subject><subject>Computer and Information Sciences</subject><subject>Datasets</subject><subject>Earth Sciences</subject><subject>Engineering and Technology</subject><subject>Environmental Monitoring</subject><subject>Ice</subject><subject>Mitigation</subject><subject>Models, Theoretical</subject><subject>MODIS</subject><subject>People and places</subject><subject>Physical Sciences</subject><subject>Remote sensing</subject><subject>Remote Sensing Technology</subject><subject>Research and Analysis Methods</subject><subject>Seasons</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Spectroradiometers</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Temperature data</subject><subject>Temperature effects</subject><subject>Trends</subject><subject>Weather</subject><subject>Weather stations</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYqPwDxBEQkJw0eJvJ7tAKhODSpUmtgGX1ql70npK4hInCP49zppNDdrF5Atbx895fT58kuQlJTPKNf1w7bumhnK28zXOCFW5YPxRckxzzqaKEf744HyUPAvhmhDJM6WeJkcsI5plUh8nZ986qFtXOAut83Xqi3TpLZTpT2gqV2_Sqwbr9Uk6Ty-w8i2ml1iHaJ9-goDrdL7bNR7s9nnypIAy4IthnyTfzz5fnX6dLs-_LE7ny6nVTLZTjgVVimRCaClBcK0RZA644iCtRIFKaJopqyQXap2tqOWoiSCcQ0GBST5JXu91d6UPZihBMDTmwhWRoicWe2Lt4drsGldB89d4cObG4JuNgaZ1tkRDBbUATDHOmFAUQCqLwCVQsJzF0yT5OLzWrSpcW6zbBsqR6Pimdluz8b-NjII6Z1Hg3SDQ-F8dhtZULlgsS6jRd33cKuMsViN_ACq1lozkfYpv_kPvL8RAbSDm6urCxxBtL2rmQmtChLrRmt1DxbXGytn4tQoX7SOH9yOHyLT4p91AF4JZXF48nD3_MWbfHrBbhLLdBl92_a8MY1DsQdv4EBos7vpBiekn47Yapp8MM0xGdHt12Ms7p9tR4P8A0S0FaA</recordid><startdate>20170110</startdate><enddate>20170110</enddate><creator>Rahaman, Khan Rubayet</creator><creator>Hassan, Quazi K</creator><creator>Chowdhury, Ehsan H</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170110</creationdate><title>Quantification of Local Warming Trend: A Remote Sensing-Based Approach</title><author>Rahaman, Khan Rubayet ; Hassan, Quazi K ; Chowdhury, Ehsan H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-3ef1660844755a4377ea59aeb3a5c5e4e647186c65346d8b1c3e704033af1a253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air temperature</topic><topic>Alberta</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Climate Change</topic><topic>Computer and Information Sciences</topic><topic>Datasets</topic><topic>Earth Sciences</topic><topic>Engineering and Technology</topic><topic>Environmental Monitoring</topic><topic>Ice</topic><topic>Mitigation</topic><topic>Models, Theoretical</topic><topic>MODIS</topic><topic>People and places</topic><topic>Physical Sciences</topic><topic>Remote sensing</topic><topic>Remote Sensing Technology</topic><topic>Research and Analysis Methods</topic><topic>Seasons</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Spectroradiometers</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Temperature data</topic><topic>Temperature effects</topic><topic>Trends</topic><topic>Weather</topic><topic>Weather stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahaman, Khan Rubayet</creatorcontrib><creatorcontrib>Hassan, Quazi K</creatorcontrib><creatorcontrib>Chowdhury, Ehsan H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahaman, Khan Rubayet</au><au>Hassan, Quazi K</au><au>Chowdhury, Ehsan H</au><au>Vadrevu, Krishna Prasad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of Local Warming Trend: A Remote Sensing-Based Approach</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-01-10</date><risdate>2017</risdate><volume>12</volume><issue>1</issue><spage>e0169423</spage><epage>e0169423</epage><pages>e0169423-e0169423</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Understanding the warming trends at local level is critical; and, the development of relevant adaptation and mitigation policies at those levels are quite challenging. Here, our overall goal was to generate local warming trend map at 1 km spatial resolution by using: (i) Moderate Resolution Imaging Spectroradiometer (MODIS)-based 8-day composite surface temperature data; (ii) weather station-based yearly average air temperature data; and (iii) air temperature normal (i.e., 30 year average) data over the Canadian province of Alberta during the period 1961-2010. Thus, we analysed the station-based air temperature data in generating relationships between air temperature normal and yearly average air temperature in order to facilitate the selection of year-specific MODIS-based surface temperature data. These MODIS data in conjunction with weather station-based air temperature normal data were then used to model local warming trends. We observed that almost 88% areas of the province experienced warming trends (i.e., up to 1.5°C). The study concluded that remote sensing technology could be useful for delineating generic trends associated with local warming.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28072857</pmid><doi>10.1371/journal.pone.0169423</doi><tpages>e0169423</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-01, Vol.12 (1), p.e0169423-e0169423 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1857360545 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Air temperature Alberta Algorithms Analysis Climate Change Computer and Information Sciences Datasets Earth Sciences Engineering and Technology Environmental Monitoring Ice Mitigation Models, Theoretical MODIS People and places Physical Sciences Remote sensing Remote Sensing Technology Research and Analysis Methods Seasons Spatial discrimination Spatial resolution Spectroradiometers Surface temperature Temperature Temperature data Temperature effects Trends Weather Weather stations |
title | Quantification of Local Warming Trend: A Remote Sensing-Based Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20Local%20Warming%20Trend:%20A%20Remote%20Sensing-Based%20Approach&rft.jtitle=PloS%20one&rft.au=Rahaman,%20Khan%20Rubayet&rft.date=2017-01-10&rft.volume=12&rft.issue=1&rft.spage=e0169423&rft.epage=e0169423&rft.pages=e0169423-e0169423&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0169423&rft_dat=%3Cgale_plos_%3EA477004695%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1857360545&rft_id=info:pmid/28072857&rft_galeid=A477004695&rft_doaj_id=oai_doaj_org_article_141caa262322461aa56cea35a1ac32ea&rfr_iscdi=true |