Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity

Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-01, Vol.12 (1), p.e0168198-e0168198
Hauptverfasser: Dalmasso, Giovanni, Marin Zapata, Paula Andrea, Brady, Nathan Ryan, Hamacher-Brady, Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0168198
container_issue 1
container_start_page e0168198
container_title PloS one
container_volume 12
creator Dalmasso, Giovanni
Marin Zapata, Paula Andrea
Brady, Nathan Ryan
Hamacher-Brady, Anne
description Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity.
doi_str_mv 10.1371/journal.pone.0168198
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1856128793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476710984</galeid><doaj_id>oai_doaj_org_article_0fc9beca40c34cae88f1b425e6ea5ffc</doaj_id><sourcerecordid>A476710984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c791t-b7a94cc0f311b8f503d7d19662f93c3fd1ccccc8d558ffe705f6d2c0e04aa8883</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBEQkJwkWLHsePcTCrlo5U6TWLAreX4I3VJ7RI7iP573DWrGrSLOReOjp_z2n59TpK8hGACUQk_rF3fWd5Ots6qCYCEwoo-Ss5hhfKM5AA9Pvk_S555vwYAI0rI0-Qsp4AASvB5sp42yobsI_dKpldOqtbYJnU6vTLBiZWzsjM8XRr7y6c3fZ3NVNv2Le_STzvLN0b4NLj0GJy7jXI-cG98yq1M5yqozsUdlAm758kTzVuvXgzzRfLjy-fvs3m2vP66mE2XmSgrGLK65FUhBNAIwppqDJAsJawIyXWFBNISiv2gEmOqtSoB1kTmAihQcE4pRRfJ64PutnWeDTZ5BikmMKdlhSKxOBDS8TXbdmbDux1z3LDbgOsaxrtgRKsY0KKqleAFEKgQXFGqYV3kWBHFsdYial0Ou_X1RkkR3ex4OxIdr1izYo37w3AOy4qCKPBuEOjc7175wDbGi-got8r1t-euCkoozh-CElyBWB4RffMfer8RA9XweFdjtYtHFHtRNi1KUkJQ0SJSk3uo-EkVKyCWnzYxPkp4P0qITFB_Q8N779ni5tvD2eufY_btCbtSvA0r79o-GGf9GCwOoOic953Sx_eAgO27584Ntu8eNnRPTHt1-pbHpLt2Qf8A2YQWSA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856128793</pqid></control><display><type>article</type><title>Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dalmasso, Giovanni ; Marin Zapata, Paula Andrea ; Brady, Nathan Ryan ; Hamacher-Brady, Anne</creator><contributor>Lim, Kah-Leong</contributor><creatorcontrib>Dalmasso, Giovanni ; Marin Zapata, Paula Andrea ; Brady, Nathan Ryan ; Hamacher-Brady, Anne ; Lim, Kah-Leong</creatorcontrib><description>Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0168198</identifier><identifier>PMID: 28060865</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agent-based models ; Analysis ; Autophagy ; Behavior ; Biochemistry ; Bioenergetics ; Biology ; Biology and Life Sciences ; Biosynthesis ; Cancer ; Cellular manufacture ; Computer and Information Sciences ; Computer Simulation ; Cytology ; Dynamics ; Energy consumption ; Energy demand ; Energy measurement ; Fission ; Heterogeneity ; Homeostasis ; Immunology ; Kinases ; Mathematical models ; Medical research ; Medicine and Health Sciences ; Membrane Fusion ; Mitochondria ; Mitochondria - physiology ; Mobility ; Models, Biological ; Morphology ; Organelle Biogenesis ; Organelles ; Oxidative phosphorylation ; Parameter identification ; Parameter sensitivity ; Phagocytosis ; Phosphorylation ; Physical Sciences ; Population ; Population biology ; Population dynamics ; Public health ; Research and Analysis Methods ; Sensitivity analysis ; Spatial distribution ; Stress ; Stresses ; Subpopulations</subject><ispartof>PloS one, 2017-01, Vol.12 (1), p.e0168198-e0168198</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Dalmasso et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Dalmasso et al 2017 Dalmasso et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c791t-b7a94cc0f311b8f503d7d19662f93c3fd1ccccc8d558ffe705f6d2c0e04aa8883</citedby><cites>FETCH-LOGICAL-c791t-b7a94cc0f311b8f503d7d19662f93c3fd1ccccc8d558ffe705f6d2c0e04aa8883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217980/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217980/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28060865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lim, Kah-Leong</contributor><creatorcontrib>Dalmasso, Giovanni</creatorcontrib><creatorcontrib>Marin Zapata, Paula Andrea</creatorcontrib><creatorcontrib>Brady, Nathan Ryan</creatorcontrib><creatorcontrib>Hamacher-Brady, Anne</creatorcontrib><title>Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity.</description><subject>Agent-based models</subject><subject>Analysis</subject><subject>Autophagy</subject><subject>Behavior</subject><subject>Biochemistry</subject><subject>Bioenergetics</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Cancer</subject><subject>Cellular manufacture</subject><subject>Computer and Information Sciences</subject><subject>Computer Simulation</subject><subject>Cytology</subject><subject>Dynamics</subject><subject>Energy consumption</subject><subject>Energy demand</subject><subject>Energy measurement</subject><subject>Fission</subject><subject>Heterogeneity</subject><subject>Homeostasis</subject><subject>Immunology</subject><subject>Kinases</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Membrane Fusion</subject><subject>Mitochondria</subject><subject>Mitochondria - physiology</subject><subject>Mobility</subject><subject>Models, Biological</subject><subject>Morphology</subject><subject>Organelle Biogenesis</subject><subject>Organelles</subject><subject>Oxidative phosphorylation</subject><subject>Parameter identification</subject><subject>Parameter sensitivity</subject><subject>Phagocytosis</subject><subject>Phosphorylation</subject><subject>Physical Sciences</subject><subject>Population</subject><subject>Population biology</subject><subject>Population dynamics</subject><subject>Public health</subject><subject>Research and Analysis Methods</subject><subject>Sensitivity analysis</subject><subject>Spatial distribution</subject><subject>Stress</subject><subject>Stresses</subject><subject>Subpopulations</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBEQkJwkWLHsePcTCrlo5U6TWLAreX4I3VJ7RI7iP573DWrGrSLOReOjp_z2n59TpK8hGACUQk_rF3fWd5Ots6qCYCEwoo-Ss5hhfKM5AA9Pvk_S555vwYAI0rI0-Qsp4AASvB5sp42yobsI_dKpldOqtbYJnU6vTLBiZWzsjM8XRr7y6c3fZ3NVNv2Le_STzvLN0b4NLj0GJy7jXI-cG98yq1M5yqozsUdlAm758kTzVuvXgzzRfLjy-fvs3m2vP66mE2XmSgrGLK65FUhBNAIwppqDJAsJawIyXWFBNISiv2gEmOqtSoB1kTmAihQcE4pRRfJ64PutnWeDTZ5BikmMKdlhSKxOBDS8TXbdmbDux1z3LDbgOsaxrtgRKsY0KKqleAFEKgQXFGqYV3kWBHFsdYial0Ou_X1RkkR3ex4OxIdr1izYo37w3AOy4qCKPBuEOjc7175wDbGi-got8r1t-euCkoozh-CElyBWB4RffMfer8RA9XweFdjtYtHFHtRNi1KUkJQ0SJSk3uo-EkVKyCWnzYxPkp4P0qITFB_Q8N779ni5tvD2eufY_btCbtSvA0r79o-GGf9GCwOoOic953Sx_eAgO27584Ntu8eNnRPTHt1-pbHpLt2Qf8A2YQWSA</recordid><startdate>20170106</startdate><enddate>20170106</enddate><creator>Dalmasso, Giovanni</creator><creator>Marin Zapata, Paula Andrea</creator><creator>Brady, Nathan Ryan</creator><creator>Hamacher-Brady, Anne</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170106</creationdate><title>Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity</title><author>Dalmasso, Giovanni ; Marin Zapata, Paula Andrea ; Brady, Nathan Ryan ; Hamacher-Brady, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c791t-b7a94cc0f311b8f503d7d19662f93c3fd1ccccc8d558ffe705f6d2c0e04aa8883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agent-based models</topic><topic>Analysis</topic><topic>Autophagy</topic><topic>Behavior</topic><topic>Biochemistry</topic><topic>Bioenergetics</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Cancer</topic><topic>Cellular manufacture</topic><topic>Computer and Information Sciences</topic><topic>Computer Simulation</topic><topic>Cytology</topic><topic>Dynamics</topic><topic>Energy consumption</topic><topic>Energy demand</topic><topic>Energy measurement</topic><topic>Fission</topic><topic>Heterogeneity</topic><topic>Homeostasis</topic><topic>Immunology</topic><topic>Kinases</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Membrane Fusion</topic><topic>Mitochondria</topic><topic>Mitochondria - physiology</topic><topic>Mobility</topic><topic>Models, Biological</topic><topic>Morphology</topic><topic>Organelle Biogenesis</topic><topic>Organelles</topic><topic>Oxidative phosphorylation</topic><topic>Parameter identification</topic><topic>Parameter sensitivity</topic><topic>Phagocytosis</topic><topic>Phosphorylation</topic><topic>Physical Sciences</topic><topic>Population</topic><topic>Population biology</topic><topic>Population dynamics</topic><topic>Public health</topic><topic>Research and Analysis Methods</topic><topic>Sensitivity analysis</topic><topic>Spatial distribution</topic><topic>Stress</topic><topic>Stresses</topic><topic>Subpopulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dalmasso, Giovanni</creatorcontrib><creatorcontrib>Marin Zapata, Paula Andrea</creatorcontrib><creatorcontrib>Brady, Nathan Ryan</creatorcontrib><creatorcontrib>Hamacher-Brady, Anne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dalmasso, Giovanni</au><au>Marin Zapata, Paula Andrea</au><au>Brady, Nathan Ryan</au><au>Hamacher-Brady, Anne</au><au>Lim, Kah-Leong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-01-06</date><risdate>2017</risdate><volume>12</volume><issue>1</issue><spage>e0168198</spage><epage>e0168198</epage><pages>e0168198-e0168198</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28060865</pmid><doi>10.1371/journal.pone.0168198</doi><tpages>e0168198</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-01, Vol.12 (1), p.e0168198-e0168198
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1856128793
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Agent-based models
Analysis
Autophagy
Behavior
Biochemistry
Bioenergetics
Biology
Biology and Life Sciences
Biosynthesis
Cancer
Cellular manufacture
Computer and Information Sciences
Computer Simulation
Cytology
Dynamics
Energy consumption
Energy demand
Energy measurement
Fission
Heterogeneity
Homeostasis
Immunology
Kinases
Mathematical models
Medical research
Medicine and Health Sciences
Membrane Fusion
Mitochondria
Mitochondria - physiology
Mobility
Models, Biological
Morphology
Organelle Biogenesis
Organelles
Oxidative phosphorylation
Parameter identification
Parameter sensitivity
Phagocytosis
Phosphorylation
Physical Sciences
Population
Population biology
Population dynamics
Public health
Research and Analysis Methods
Sensitivity analysis
Spatial distribution
Stress
Stresses
Subpopulations
title Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Agent-Based%20Modeling%20of%20Mitochondria%20Links%20Sub-Cellular%20Dynamics%20to%20Cellular%20Homeostasis%20and%20Heterogeneity&rft.jtitle=PloS%20one&rft.au=Dalmasso,%20Giovanni&rft.date=2017-01-06&rft.volume=12&rft.issue=1&rft.spage=e0168198&rft.epage=e0168198&rft.pages=e0168198-e0168198&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0168198&rft_dat=%3Cgale_plos_%3EA476710984%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856128793&rft_id=info:pmid/28060865&rft_galeid=A476710984&rft_doaj_id=oai_doaj_org_article_0fc9beca40c34cae88f1b425e6ea5ffc&rfr_iscdi=true