Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity
Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintain...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-01, Vol.12 (1), p.e0168198-e0168198 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0168198 |
---|---|
container_issue | 1 |
container_start_page | e0168198 |
container_title | PloS one |
container_volume | 12 |
creator | Dalmasso, Giovanni Marin Zapata, Paula Andrea Brady, Nathan Ryan Hamacher-Brady, Anne |
description | Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity. |
doi_str_mv | 10.1371/journal.pone.0168198 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1856128793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476710984</galeid><doaj_id>oai_doaj_org_article_0fc9beca40c34cae88f1b425e6ea5ffc</doaj_id><sourcerecordid>A476710984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c791t-b7a94cc0f311b8f503d7d19662f93c3fd1ccccc8d558ffe705f6d2c0e04aa8883</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBEQkJwkWLHsePcTCrlo5U6TWLAreX4I3VJ7RI7iP573DWrGrSLOReOjp_z2n59TpK8hGACUQk_rF3fWd5Ots6qCYCEwoo-Ss5hhfKM5AA9Pvk_S555vwYAI0rI0-Qsp4AASvB5sp42yobsI_dKpldOqtbYJnU6vTLBiZWzsjM8XRr7y6c3fZ3NVNv2Le_STzvLN0b4NLj0GJy7jXI-cG98yq1M5yqozsUdlAm758kTzVuvXgzzRfLjy-fvs3m2vP66mE2XmSgrGLK65FUhBNAIwppqDJAsJawIyXWFBNISiv2gEmOqtSoB1kTmAihQcE4pRRfJ64PutnWeDTZ5BikmMKdlhSKxOBDS8TXbdmbDux1z3LDbgOsaxrtgRKsY0KKqleAFEKgQXFGqYV3kWBHFsdYial0Ou_X1RkkR3ex4OxIdr1izYo37w3AOy4qCKPBuEOjc7175wDbGi-got8r1t-euCkoozh-CElyBWB4RffMfer8RA9XweFdjtYtHFHtRNi1KUkJQ0SJSk3uo-EkVKyCWnzYxPkp4P0qITFB_Q8N779ni5tvD2eufY_btCbtSvA0r79o-GGf9GCwOoOic953Sx_eAgO27584Ntu8eNnRPTHt1-pbHpLt2Qf8A2YQWSA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856128793</pqid></control><display><type>article</type><title>Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dalmasso, Giovanni ; Marin Zapata, Paula Andrea ; Brady, Nathan Ryan ; Hamacher-Brady, Anne</creator><contributor>Lim, Kah-Leong</contributor><creatorcontrib>Dalmasso, Giovanni ; Marin Zapata, Paula Andrea ; Brady, Nathan Ryan ; Hamacher-Brady, Anne ; Lim, Kah-Leong</creatorcontrib><description>Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0168198</identifier><identifier>PMID: 28060865</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agent-based models ; Analysis ; Autophagy ; Behavior ; Biochemistry ; Bioenergetics ; Biology ; Biology and Life Sciences ; Biosynthesis ; Cancer ; Cellular manufacture ; Computer and Information Sciences ; Computer Simulation ; Cytology ; Dynamics ; Energy consumption ; Energy demand ; Energy measurement ; Fission ; Heterogeneity ; Homeostasis ; Immunology ; Kinases ; Mathematical models ; Medical research ; Medicine and Health Sciences ; Membrane Fusion ; Mitochondria ; Mitochondria - physiology ; Mobility ; Models, Biological ; Morphology ; Organelle Biogenesis ; Organelles ; Oxidative phosphorylation ; Parameter identification ; Parameter sensitivity ; Phagocytosis ; Phosphorylation ; Physical Sciences ; Population ; Population biology ; Population dynamics ; Public health ; Research and Analysis Methods ; Sensitivity analysis ; Spatial distribution ; Stress ; Stresses ; Subpopulations</subject><ispartof>PloS one, 2017-01, Vol.12 (1), p.e0168198-e0168198</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Dalmasso et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Dalmasso et al 2017 Dalmasso et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c791t-b7a94cc0f311b8f503d7d19662f93c3fd1ccccc8d558ffe705f6d2c0e04aa8883</citedby><cites>FETCH-LOGICAL-c791t-b7a94cc0f311b8f503d7d19662f93c3fd1ccccc8d558ffe705f6d2c0e04aa8883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217980/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217980/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28060865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lim, Kah-Leong</contributor><creatorcontrib>Dalmasso, Giovanni</creatorcontrib><creatorcontrib>Marin Zapata, Paula Andrea</creatorcontrib><creatorcontrib>Brady, Nathan Ryan</creatorcontrib><creatorcontrib>Hamacher-Brady, Anne</creatorcontrib><title>Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity.</description><subject>Agent-based models</subject><subject>Analysis</subject><subject>Autophagy</subject><subject>Behavior</subject><subject>Biochemistry</subject><subject>Bioenergetics</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Cancer</subject><subject>Cellular manufacture</subject><subject>Computer and Information Sciences</subject><subject>Computer Simulation</subject><subject>Cytology</subject><subject>Dynamics</subject><subject>Energy consumption</subject><subject>Energy demand</subject><subject>Energy measurement</subject><subject>Fission</subject><subject>Heterogeneity</subject><subject>Homeostasis</subject><subject>Immunology</subject><subject>Kinases</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Membrane Fusion</subject><subject>Mitochondria</subject><subject>Mitochondria - physiology</subject><subject>Mobility</subject><subject>Models, Biological</subject><subject>Morphology</subject><subject>Organelle Biogenesis</subject><subject>Organelles</subject><subject>Oxidative phosphorylation</subject><subject>Parameter identification</subject><subject>Parameter sensitivity</subject><subject>Phagocytosis</subject><subject>Phosphorylation</subject><subject>Physical Sciences</subject><subject>Population</subject><subject>Population biology</subject><subject>Population dynamics</subject><subject>Public health</subject><subject>Research and Analysis Methods</subject><subject>Sensitivity analysis</subject><subject>Spatial distribution</subject><subject>Stress</subject><subject>Stresses</subject><subject>Subpopulations</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBEQkJwkWLHsePcTCrlo5U6TWLAreX4I3VJ7RI7iP573DWrGrSLOReOjp_z2n59TpK8hGACUQk_rF3fWd5Ots6qCYCEwoo-Ss5hhfKM5AA9Pvk_S555vwYAI0rI0-Qsp4AASvB5sp42yobsI_dKpldOqtbYJnU6vTLBiZWzsjM8XRr7y6c3fZ3NVNv2Le_STzvLN0b4NLj0GJy7jXI-cG98yq1M5yqozsUdlAm758kTzVuvXgzzRfLjy-fvs3m2vP66mE2XmSgrGLK65FUhBNAIwppqDJAsJawIyXWFBNISiv2gEmOqtSoB1kTmAihQcE4pRRfJ64PutnWeDTZ5BikmMKdlhSKxOBDS8TXbdmbDux1z3LDbgOsaxrtgRKsY0KKqleAFEKgQXFGqYV3kWBHFsdYial0Ou_X1RkkR3ex4OxIdr1izYo37w3AOy4qCKPBuEOjc7175wDbGi-got8r1t-euCkoozh-CElyBWB4RffMfer8RA9XweFdjtYtHFHtRNi1KUkJQ0SJSk3uo-EkVKyCWnzYxPkp4P0qITFB_Q8N779ni5tvD2eufY_btCbtSvA0r79o-GGf9GCwOoOic953Sx_eAgO27584Ntu8eNnRPTHt1-pbHpLt2Qf8A2YQWSA</recordid><startdate>20170106</startdate><enddate>20170106</enddate><creator>Dalmasso, Giovanni</creator><creator>Marin Zapata, Paula Andrea</creator><creator>Brady, Nathan Ryan</creator><creator>Hamacher-Brady, Anne</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170106</creationdate><title>Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity</title><author>Dalmasso, Giovanni ; Marin Zapata, Paula Andrea ; Brady, Nathan Ryan ; Hamacher-Brady, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c791t-b7a94cc0f311b8f503d7d19662f93c3fd1ccccc8d558ffe705f6d2c0e04aa8883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agent-based models</topic><topic>Analysis</topic><topic>Autophagy</topic><topic>Behavior</topic><topic>Biochemistry</topic><topic>Bioenergetics</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Cancer</topic><topic>Cellular manufacture</topic><topic>Computer and Information Sciences</topic><topic>Computer Simulation</topic><topic>Cytology</topic><topic>Dynamics</topic><topic>Energy consumption</topic><topic>Energy demand</topic><topic>Energy measurement</topic><topic>Fission</topic><topic>Heterogeneity</topic><topic>Homeostasis</topic><topic>Immunology</topic><topic>Kinases</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Membrane Fusion</topic><topic>Mitochondria</topic><topic>Mitochondria - physiology</topic><topic>Mobility</topic><topic>Models, Biological</topic><topic>Morphology</topic><topic>Organelle Biogenesis</topic><topic>Organelles</topic><topic>Oxidative phosphorylation</topic><topic>Parameter identification</topic><topic>Parameter sensitivity</topic><topic>Phagocytosis</topic><topic>Phosphorylation</topic><topic>Physical Sciences</topic><topic>Population</topic><topic>Population biology</topic><topic>Population dynamics</topic><topic>Public health</topic><topic>Research and Analysis Methods</topic><topic>Sensitivity analysis</topic><topic>Spatial distribution</topic><topic>Stress</topic><topic>Stresses</topic><topic>Subpopulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dalmasso, Giovanni</creatorcontrib><creatorcontrib>Marin Zapata, Paula Andrea</creatorcontrib><creatorcontrib>Brady, Nathan Ryan</creatorcontrib><creatorcontrib>Hamacher-Brady, Anne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dalmasso, Giovanni</au><au>Marin Zapata, Paula Andrea</au><au>Brady, Nathan Ryan</au><au>Hamacher-Brady, Anne</au><au>Lim, Kah-Leong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-01-06</date><risdate>2017</risdate><volume>12</volume><issue>1</issue><spage>e0168198</spage><epage>e0168198</epage><pages>e0168198-e0168198</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28060865</pmid><doi>10.1371/journal.pone.0168198</doi><tpages>e0168198</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-01, Vol.12 (1), p.e0168198-e0168198 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1856128793 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Agent-based models Analysis Autophagy Behavior Biochemistry Bioenergetics Biology Biology and Life Sciences Biosynthesis Cancer Cellular manufacture Computer and Information Sciences Computer Simulation Cytology Dynamics Energy consumption Energy demand Energy measurement Fission Heterogeneity Homeostasis Immunology Kinases Mathematical models Medical research Medicine and Health Sciences Membrane Fusion Mitochondria Mitochondria - physiology Mobility Models, Biological Morphology Organelle Biogenesis Organelles Oxidative phosphorylation Parameter identification Parameter sensitivity Phagocytosis Phosphorylation Physical Sciences Population Population biology Population dynamics Public health Research and Analysis Methods Sensitivity analysis Spatial distribution Stress Stresses Subpopulations |
title | Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Agent-Based%20Modeling%20of%20Mitochondria%20Links%20Sub-Cellular%20Dynamics%20to%20Cellular%20Homeostasis%20and%20Heterogeneity&rft.jtitle=PloS%20one&rft.au=Dalmasso,%20Giovanni&rft.date=2017-01-06&rft.volume=12&rft.issue=1&rft.spage=e0168198&rft.epage=e0168198&rft.pages=e0168198-e0168198&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0168198&rft_dat=%3Cgale_plos_%3EA476710984%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856128793&rft_id=info:pmid/28060865&rft_galeid=A476710984&rft_doaj_id=oai_doaj_org_article_0fc9beca40c34cae88f1b425e6ea5ffc&rfr_iscdi=true |