Using Automated HbA1c Testing to Detect Diabetes Mellitus in Orthopedic Inpatients and Its Effect on Outcomes
The prevalence of diabetes is rising, and people with diabetes have higher rates of musculoskeletal-related comorbidities. HbA1c testing is a superior option for diabetes diagnosis in the inpatient setting. This study aimed to (i) demonstrate the feasibility of routine HbA1c testing to detect the pr...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-01, Vol.12 (1), p.e0168471-e0168471 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0168471 |
---|---|
container_issue | 1 |
container_start_page | e0168471 |
container_title | PloS one |
container_volume | 12 |
creator | Ekinci, Elif I Kong, Alvin Churilov, Leonid Nanayakkara, Natalie Chiu, Wei Ling Sumithran, Priya Djukiadmodjo, Frida Premaratne, Erosha Owen-Jones, Elizabeth Hart, Graeme Kevin Robbins, Raymond Hardidge, Andrew Johnson, Douglas Baker, Scott T Zajac, Jeffrey D |
description | The prevalence of diabetes is rising, and people with diabetes have higher rates of musculoskeletal-related comorbidities. HbA1c testing is a superior option for diabetes diagnosis in the inpatient setting. This study aimed to (i) demonstrate the feasibility of routine HbA1c testing to detect the presence of diabetes mellitus, (ii) to determine the prevalence of diabetes in orthopedic inpatients and (iii) to assess the association between diabetes and hospital outcomes and post-operative complications in orthopedic inpatients.
All patients aged ≥54 years admitted to Austin Health between July 2013 and January 2014 had routine automated HbA1c measurements using automated clinical information systems (CERNER). Patients with HbA1c ≥6.5% were diagnosed with diabetes. Baseline demographic and clinical data were obtained from hospital records.
Of the 416 orthopedic inpatients included in this study, 22% (n = 93) were known to have diabetes, 4% (n = 15) had previously unrecognized diabetes and 74% (n = 308) did not have diabetes. Patients with diabetes had significantly higher Charlson comorbidity scores compared to patients without diabetes (median, IQR; 1 [0,2] vs 0 [0,0], p |
doi_str_mv | 10.1371/journal.pone.0168471 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1856128622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476711096</galeid><doaj_id>oai_doaj_org_article_7c7be9c35b904b11a1791658bcfac584</doaj_id><sourcerecordid>A476711096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-626d430fd912e00aed572f50a9badfde975d43993e8fe1ed955327cadec540723</originalsourceid><addsrcrecordid>eNqNk19v0zAUxSMEYmPwDRBEQkLw0OI_sR2_IFXbYJWGKsHGq-XYN62nJC6xg-Db46zZ1KI97MnW9e8c3xznZtlrjOaYCvzpxg99p5v51ncwR5iXhcBPsmMsKZlxgujTvf1R9iKEG4QYLTl_nh2REnFUUnyctdfBdet8MUTf6gg2v6gW2ORXEOJYjz4_gwgm5mdOV2kX8m_QNC4OIXddvurjxm_BOpMvu62ODroYct3ZfJnW87oelT5xQzS-hfAye1brJsCraT3Jrr-cX51ezC5XX5eni8uZEYTF1DK3BUW1lZgAQhosE6RmSMtK29qCFCydS0mhrAGDlYxRIoy2YFiBBKEn2dud77bxQU1JBYVLxjEpORmJ5Y6wXt-obe9a3f9VXjt1W_D9Wuk-OtOAEkZUIA1llURFhbHGQmLOysrU2rCySF6fp9uGqgVrUgi9bg5MD086t1Fr_1sxkjoSOBl8mAx6_2tI0avWBZNy1h344bZvWXDO5aNQziQinCb03X_ow0FM1Fqnb3Vd7VOLZjRVi0JwgTGSPFHzByg9Rt46k_7A2qX6geDjgSAxEf7EtR5CUMsf3x_Prn4esu_32A3oJm6Cb4bofBcOwWIHmt6H0EN9_x4YqXGA7tJQ4wCpaYCS7M3-W96L7iaG_gOa7BTH</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856128622</pqid></control><display><type>article</type><title>Using Automated HbA1c Testing to Detect Diabetes Mellitus in Orthopedic Inpatients and Its Effect on Outcomes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ekinci, Elif I ; Kong, Alvin ; Churilov, Leonid ; Nanayakkara, Natalie ; Chiu, Wei Ling ; Sumithran, Priya ; Djukiadmodjo, Frida ; Premaratne, Erosha ; Owen-Jones, Elizabeth ; Hart, Graeme Kevin ; Robbins, Raymond ; Hardidge, Andrew ; Johnson, Douglas ; Baker, Scott T ; Zajac, Jeffrey D</creator><contributor>Bencharit, Sompop</contributor><creatorcontrib>Ekinci, Elif I ; Kong, Alvin ; Churilov, Leonid ; Nanayakkara, Natalie ; Chiu, Wei Ling ; Sumithran, Priya ; Djukiadmodjo, Frida ; Premaratne, Erosha ; Owen-Jones, Elizabeth ; Hart, Graeme Kevin ; Robbins, Raymond ; Hardidge, Andrew ; Johnson, Douglas ; Baker, Scott T ; Zajac, Jeffrey D ; Bencharit, Sompop</creatorcontrib><description>The prevalence of diabetes is rising, and people with diabetes have higher rates of musculoskeletal-related comorbidities. HbA1c testing is a superior option for diabetes diagnosis in the inpatient setting. This study aimed to (i) demonstrate the feasibility of routine HbA1c testing to detect the presence of diabetes mellitus, (ii) to determine the prevalence of diabetes in orthopedic inpatients and (iii) to assess the association between diabetes and hospital outcomes and post-operative complications in orthopedic inpatients.
All patients aged ≥54 years admitted to Austin Health between July 2013 and January 2014 had routine automated HbA1c measurements using automated clinical information systems (CERNER). Patients with HbA1c ≥6.5% were diagnosed with diabetes. Baseline demographic and clinical data were obtained from hospital records.
Of the 416 orthopedic inpatients included in this study, 22% (n = 93) were known to have diabetes, 4% (n = 15) had previously unrecognized diabetes and 74% (n = 308) did not have diabetes. Patients with diabetes had significantly higher Charlson comorbidity scores compared to patients without diabetes (median, IQR; 1 [0,2] vs 0 [0,0], p<0.001). After adjusting for age, gender, comorbidity score and estimated glomerular filtration rate, no significant differences in the length of stay (IRR = 0.92; 95%CI: 0.79-1.07; p = 0.280), rates of intensive care unit admission (OR = 1.04; 95%CI: 0.42-2.60, p = 0.934), 6-month mortality (OR = 0.52; 95%CI: 0.17-1.60, p = 0.252), 6-month hospital readmission (OR = 0.93; 95%CI: 0.46-1.87; p = 0.828) or any post-operative complications (OR = 0.98; 95%CI: 0.53-1.80; p = 0.944) were observed between patients with and without diabetes.
Routine HbA1c measurement using CERNER allows for rapid identification of inpatients admitted with diabetes. More than one in four patients admitted to a tertiary hospital orthopedic ward have diabetes. No statistically significant differences in the rates of hospital outcomes and post-operative complications were identified between patients with and without diabetes.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0168471</identifier><identifier>PMID: 28060831</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Automation ; Biology and life sciences ; Care and treatment ; Complications ; Demographics ; Diabetes ; Diabetes Complications ; Diabetes mellitus ; Diabetes Mellitus - blood ; Diabetes Mellitus - diagnosis ; Diabetes Mellitus - epidemiology ; Diagnosis ; Diagnostic Tests, Routine ; Feasibility Studies ; Female ; Glomerular filtration rate ; Glucose ; Glycated Hemoglobin A - analysis ; Glycosylated hemoglobin ; Health screening ; Hemoglobin ; Hospitalization ; Humans ; Information systems ; Inpatients ; Joint surgery ; Male ; Measurement ; Medical diagnosis ; Medical records ; Medicine and Health Sciences ; Middle Aged ; Mortality ; Orthopedic Procedures ; Outcome Assessment (Health Care) ; Patients ; Physiological aspects ; Prevalence ; Prospective Studies ; Statistical analysis</subject><ispartof>PloS one, 2017-01, Vol.12 (1), p.e0168471-e0168471</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Ekinci et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Ekinci et al 2017 Ekinci et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-626d430fd912e00aed572f50a9badfde975d43993e8fe1ed955327cadec540723</citedby><cites>FETCH-LOGICAL-c725t-626d430fd912e00aed572f50a9badfde975d43993e8fe1ed955327cadec540723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5218571/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5218571/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2097,2916,23848,27906,27907,53773,53775,79350,79351</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28060831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bencharit, Sompop</contributor><creatorcontrib>Ekinci, Elif I</creatorcontrib><creatorcontrib>Kong, Alvin</creatorcontrib><creatorcontrib>Churilov, Leonid</creatorcontrib><creatorcontrib>Nanayakkara, Natalie</creatorcontrib><creatorcontrib>Chiu, Wei Ling</creatorcontrib><creatorcontrib>Sumithran, Priya</creatorcontrib><creatorcontrib>Djukiadmodjo, Frida</creatorcontrib><creatorcontrib>Premaratne, Erosha</creatorcontrib><creatorcontrib>Owen-Jones, Elizabeth</creatorcontrib><creatorcontrib>Hart, Graeme Kevin</creatorcontrib><creatorcontrib>Robbins, Raymond</creatorcontrib><creatorcontrib>Hardidge, Andrew</creatorcontrib><creatorcontrib>Johnson, Douglas</creatorcontrib><creatorcontrib>Baker, Scott T</creatorcontrib><creatorcontrib>Zajac, Jeffrey D</creatorcontrib><title>Using Automated HbA1c Testing to Detect Diabetes Mellitus in Orthopedic Inpatients and Its Effect on Outcomes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The prevalence of diabetes is rising, and people with diabetes have higher rates of musculoskeletal-related comorbidities. HbA1c testing is a superior option for diabetes diagnosis in the inpatient setting. This study aimed to (i) demonstrate the feasibility of routine HbA1c testing to detect the presence of diabetes mellitus, (ii) to determine the prevalence of diabetes in orthopedic inpatients and (iii) to assess the association between diabetes and hospital outcomes and post-operative complications in orthopedic inpatients.
All patients aged ≥54 years admitted to Austin Health between July 2013 and January 2014 had routine automated HbA1c measurements using automated clinical information systems (CERNER). Patients with HbA1c ≥6.5% were diagnosed with diabetes. Baseline demographic and clinical data were obtained from hospital records.
Of the 416 orthopedic inpatients included in this study, 22% (n = 93) were known to have diabetes, 4% (n = 15) had previously unrecognized diabetes and 74% (n = 308) did not have diabetes. Patients with diabetes had significantly higher Charlson comorbidity scores compared to patients without diabetes (median, IQR; 1 [0,2] vs 0 [0,0], p<0.001). After adjusting for age, gender, comorbidity score and estimated glomerular filtration rate, no significant differences in the length of stay (IRR = 0.92; 95%CI: 0.79-1.07; p = 0.280), rates of intensive care unit admission (OR = 1.04; 95%CI: 0.42-2.60, p = 0.934), 6-month mortality (OR = 0.52; 95%CI: 0.17-1.60, p = 0.252), 6-month hospital readmission (OR = 0.93; 95%CI: 0.46-1.87; p = 0.828) or any post-operative complications (OR = 0.98; 95%CI: 0.53-1.80; p = 0.944) were observed between patients with and without diabetes.
Routine HbA1c measurement using CERNER allows for rapid identification of inpatients admitted with diabetes. More than one in four patients admitted to a tertiary hospital orthopedic ward have diabetes. No statistically significant differences in the rates of hospital outcomes and post-operative complications were identified between patients with and without diabetes.</description><subject>Automation</subject><subject>Biology and life sciences</subject><subject>Care and treatment</subject><subject>Complications</subject><subject>Demographics</subject><subject>Diabetes</subject><subject>Diabetes Complications</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus - blood</subject><subject>Diabetes Mellitus - diagnosis</subject><subject>Diabetes Mellitus - epidemiology</subject><subject>Diagnosis</subject><subject>Diagnostic Tests, Routine</subject><subject>Feasibility Studies</subject><subject>Female</subject><subject>Glomerular filtration rate</subject><subject>Glucose</subject><subject>Glycated Hemoglobin A - analysis</subject><subject>Glycosylated hemoglobin</subject><subject>Health screening</subject><subject>Hemoglobin</subject><subject>Hospitalization</subject><subject>Humans</subject><subject>Information systems</subject><subject>Inpatients</subject><subject>Joint surgery</subject><subject>Male</subject><subject>Measurement</subject><subject>Medical diagnosis</subject><subject>Medical records</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>Mortality</subject><subject>Orthopedic Procedures</subject><subject>Outcome Assessment (Health Care)</subject><subject>Patients</subject><subject>Physiological aspects</subject><subject>Prevalence</subject><subject>Prospective Studies</subject><subject>Statistical analysis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk19v0zAUxSMEYmPwDRBEQkLw0OI_sR2_IFXbYJWGKsHGq-XYN62nJC6xg-Db46zZ1KI97MnW9e8c3xznZtlrjOaYCvzpxg99p5v51ncwR5iXhcBPsmMsKZlxgujTvf1R9iKEG4QYLTl_nh2REnFUUnyctdfBdet8MUTf6gg2v6gW2ORXEOJYjz4_gwgm5mdOV2kX8m_QNC4OIXddvurjxm_BOpMvu62ODroYct3ZfJnW87oelT5xQzS-hfAye1brJsCraT3Jrr-cX51ezC5XX5eni8uZEYTF1DK3BUW1lZgAQhosE6RmSMtK29qCFCydS0mhrAGDlYxRIoy2YFiBBKEn2dud77bxQU1JBYVLxjEpORmJ5Y6wXt-obe9a3f9VXjt1W_D9Wuk-OtOAEkZUIA1llURFhbHGQmLOysrU2rCySF6fp9uGqgVrUgi9bg5MD086t1Fr_1sxkjoSOBl8mAx6_2tI0avWBZNy1h344bZvWXDO5aNQziQinCb03X_ow0FM1Fqnb3Vd7VOLZjRVi0JwgTGSPFHzByg9Rt46k_7A2qX6geDjgSAxEf7EtR5CUMsf3x_Prn4esu_32A3oJm6Cb4bofBcOwWIHmt6H0EN9_x4YqXGA7tJQ4wCpaYCS7M3-W96L7iaG_gOa7BTH</recordid><startdate>20170106</startdate><enddate>20170106</enddate><creator>Ekinci, Elif I</creator><creator>Kong, Alvin</creator><creator>Churilov, Leonid</creator><creator>Nanayakkara, Natalie</creator><creator>Chiu, Wei Ling</creator><creator>Sumithran, Priya</creator><creator>Djukiadmodjo, Frida</creator><creator>Premaratne, Erosha</creator><creator>Owen-Jones, Elizabeth</creator><creator>Hart, Graeme Kevin</creator><creator>Robbins, Raymond</creator><creator>Hardidge, Andrew</creator><creator>Johnson, Douglas</creator><creator>Baker, Scott T</creator><creator>Zajac, Jeffrey D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170106</creationdate><title>Using Automated HbA1c Testing to Detect Diabetes Mellitus in Orthopedic Inpatients and Its Effect on Outcomes</title><author>Ekinci, Elif I ; Kong, Alvin ; Churilov, Leonid ; Nanayakkara, Natalie ; Chiu, Wei Ling ; Sumithran, Priya ; Djukiadmodjo, Frida ; Premaratne, Erosha ; Owen-Jones, Elizabeth ; Hart, Graeme Kevin ; Robbins, Raymond ; Hardidge, Andrew ; Johnson, Douglas ; Baker, Scott T ; Zajac, Jeffrey D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-626d430fd912e00aed572f50a9badfde975d43993e8fe1ed955327cadec540723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automation</topic><topic>Biology and life sciences</topic><topic>Care and treatment</topic><topic>Complications</topic><topic>Demographics</topic><topic>Diabetes</topic><topic>Diabetes Complications</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus - blood</topic><topic>Diabetes Mellitus - diagnosis</topic><topic>Diabetes Mellitus - epidemiology</topic><topic>Diagnosis</topic><topic>Diagnostic Tests, Routine</topic><topic>Feasibility Studies</topic><topic>Female</topic><topic>Glomerular filtration rate</topic><topic>Glucose</topic><topic>Glycated Hemoglobin A - analysis</topic><topic>Glycosylated hemoglobin</topic><topic>Health screening</topic><topic>Hemoglobin</topic><topic>Hospitalization</topic><topic>Humans</topic><topic>Information systems</topic><topic>Inpatients</topic><topic>Joint surgery</topic><topic>Male</topic><topic>Measurement</topic><topic>Medical diagnosis</topic><topic>Medical records</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>Mortality</topic><topic>Orthopedic Procedures</topic><topic>Outcome Assessment (Health Care)</topic><topic>Patients</topic><topic>Physiological aspects</topic><topic>Prevalence</topic><topic>Prospective Studies</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ekinci, Elif I</creatorcontrib><creatorcontrib>Kong, Alvin</creatorcontrib><creatorcontrib>Churilov, Leonid</creatorcontrib><creatorcontrib>Nanayakkara, Natalie</creatorcontrib><creatorcontrib>Chiu, Wei Ling</creatorcontrib><creatorcontrib>Sumithran, Priya</creatorcontrib><creatorcontrib>Djukiadmodjo, Frida</creatorcontrib><creatorcontrib>Premaratne, Erosha</creatorcontrib><creatorcontrib>Owen-Jones, Elizabeth</creatorcontrib><creatorcontrib>Hart, Graeme Kevin</creatorcontrib><creatorcontrib>Robbins, Raymond</creatorcontrib><creatorcontrib>Hardidge, Andrew</creatorcontrib><creatorcontrib>Johnson, Douglas</creatorcontrib><creatorcontrib>Baker, Scott T</creatorcontrib><creatorcontrib>Zajac, Jeffrey D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ekinci, Elif I</au><au>Kong, Alvin</au><au>Churilov, Leonid</au><au>Nanayakkara, Natalie</au><au>Chiu, Wei Ling</au><au>Sumithran, Priya</au><au>Djukiadmodjo, Frida</au><au>Premaratne, Erosha</au><au>Owen-Jones, Elizabeth</au><au>Hart, Graeme Kevin</au><au>Robbins, Raymond</au><au>Hardidge, Andrew</au><au>Johnson, Douglas</au><au>Baker, Scott T</au><au>Zajac, Jeffrey D</au><au>Bencharit, Sompop</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Automated HbA1c Testing to Detect Diabetes Mellitus in Orthopedic Inpatients and Its Effect on Outcomes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-01-06</date><risdate>2017</risdate><volume>12</volume><issue>1</issue><spage>e0168471</spage><epage>e0168471</epage><pages>e0168471-e0168471</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The prevalence of diabetes is rising, and people with diabetes have higher rates of musculoskeletal-related comorbidities. HbA1c testing is a superior option for diabetes diagnosis in the inpatient setting. This study aimed to (i) demonstrate the feasibility of routine HbA1c testing to detect the presence of diabetes mellitus, (ii) to determine the prevalence of diabetes in orthopedic inpatients and (iii) to assess the association between diabetes and hospital outcomes and post-operative complications in orthopedic inpatients.
All patients aged ≥54 years admitted to Austin Health between July 2013 and January 2014 had routine automated HbA1c measurements using automated clinical information systems (CERNER). Patients with HbA1c ≥6.5% were diagnosed with diabetes. Baseline demographic and clinical data were obtained from hospital records.
Of the 416 orthopedic inpatients included in this study, 22% (n = 93) were known to have diabetes, 4% (n = 15) had previously unrecognized diabetes and 74% (n = 308) did not have diabetes. Patients with diabetes had significantly higher Charlson comorbidity scores compared to patients without diabetes (median, IQR; 1 [0,2] vs 0 [0,0], p<0.001). After adjusting for age, gender, comorbidity score and estimated glomerular filtration rate, no significant differences in the length of stay (IRR = 0.92; 95%CI: 0.79-1.07; p = 0.280), rates of intensive care unit admission (OR = 1.04; 95%CI: 0.42-2.60, p = 0.934), 6-month mortality (OR = 0.52; 95%CI: 0.17-1.60, p = 0.252), 6-month hospital readmission (OR = 0.93; 95%CI: 0.46-1.87; p = 0.828) or any post-operative complications (OR = 0.98; 95%CI: 0.53-1.80; p = 0.944) were observed between patients with and without diabetes.
Routine HbA1c measurement using CERNER allows for rapid identification of inpatients admitted with diabetes. More than one in four patients admitted to a tertiary hospital orthopedic ward have diabetes. No statistically significant differences in the rates of hospital outcomes and post-operative complications were identified between patients with and without diabetes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28060831</pmid><doi>10.1371/journal.pone.0168471</doi><tpages>e0168471</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-01, Vol.12 (1), p.e0168471-e0168471 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1856128622 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Automation Biology and life sciences Care and treatment Complications Demographics Diabetes Diabetes Complications Diabetes mellitus Diabetes Mellitus - blood Diabetes Mellitus - diagnosis Diabetes Mellitus - epidemiology Diagnosis Diagnostic Tests, Routine Feasibility Studies Female Glomerular filtration rate Glucose Glycated Hemoglobin A - analysis Glycosylated hemoglobin Health screening Hemoglobin Hospitalization Humans Information systems Inpatients Joint surgery Male Measurement Medical diagnosis Medical records Medicine and Health Sciences Middle Aged Mortality Orthopedic Procedures Outcome Assessment (Health Care) Patients Physiological aspects Prevalence Prospective Studies Statistical analysis |
title | Using Automated HbA1c Testing to Detect Diabetes Mellitus in Orthopedic Inpatients and Its Effect on Outcomes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Automated%20HbA1c%20Testing%20to%20Detect%20Diabetes%20Mellitus%20in%20Orthopedic%20Inpatients%20and%20Its%20Effect%20on%20Outcomes&rft.jtitle=PloS%20one&rft.au=Ekinci,%20Elif%20I&rft.date=2017-01-06&rft.volume=12&rft.issue=1&rft.spage=e0168471&rft.epage=e0168471&rft.pages=e0168471-e0168471&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0168471&rft_dat=%3Cgale_plos_%3EA476711096%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856128622&rft_id=info:pmid/28060831&rft_galeid=A476711096&rft_doaj_id=oai_doaj_org_article_7c7be9c35b904b11a1791658bcfac584&rfr_iscdi=true |