A Data Fusion Approach to Enhance Association Study in Epilepsy
Among the scientific challenges posed by complex diseases with a strong genetic component, two stand out. One is unveiling the role of rare and common genetic variants; the other is the design of classification models to improve clinical diagnosis and predictive models for prognosis and personalized...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-12, Vol.11 (12), p.e0164940-e0164940 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0164940 |
---|---|
container_issue | 12 |
container_start_page | e0164940 |
container_title | PloS one |
container_volume | 11 |
creator | Marini, Simone Limongelli, Ivan Rizzo, Ettore Malovini, Alberto Errichiello, Edoardo Vetro, Annalisa Da, Tan Zuffardi, Orsetta Bellazzi, Riccardo |
description | Among the scientific challenges posed by complex diseases with a strong genetic component, two stand out. One is unveiling the role of rare and common genetic variants; the other is the design of classification models to improve clinical diagnosis and predictive models for prognosis and personalized therapies. In this paper, we present a data fusion framework merging gene, domain, pathway and protein-protein interaction data related to a next generation sequencing epilepsy gene panel. Our method allows integrating association information from multiple genomic sources and aims at highlighting the set of common and rare variants that are capable to trigger the occurrence of a complex disease. When compared to other approaches, our method shows better performances in classifying patients affected by epilepsy. |
doi_str_mv | 10.1371/journal.pone.0164940 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1849689208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A474078628</galeid><doaj_id>oai_doaj_org_article_6fc982d8ffae484685729f65500bd04f</doaj_id><sourcerecordid>A474078628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c835t-13a11589996bd8db392908a50d37b4d133660f5a09a1a3b413d2f76172e6a0513</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7kW_gWhBEH2YMfcmL8qwzurAwoKrvobTNJnp0Glq08rOtzd1ustU9mHJQ0LO7_xzLjlJ8gqjOaYZ_rj1fVtDNW98becIC6YYepKcYkXJTBBEnx6dT5KzELYIcSqFeJ6ckExJxqU8TT4v0i_QQXrZh9LX6aJpWg9mk3Y-XdYbqI1NFyF4U0I32G-6vtinZZ0um7KyTdi_SJ45qIJ9Oe7nyc_L5Y-Lb7Or66-ri8XVzEjKuxmmgDGXSimRF7LIqSIKSeCooFnOCkypEMhxQAow0JxhWhCXCZwRKwBxTM-TNwfdpvJBj7kHjSVTQiqCZCRWB6LwsNVNW-6g3WsPpf534du1hrYrTWW1cEZJUkjnwDLJhOQZUU5wjlBeIOai1qfxtT7f2cLYumuhmohOLXW50Wv_R3MsMCUkCrwfBVr_u7eh07syGFtVUFvfD3FzxbLYEPYYlIhYLDYU4e1_6MOFGKk1xFzL2vkYohlE9YJlDGVSkIGaP0DFVdhdaeKfcrHBU4cPE4fIdPa2W0Mfgl7dfH88e_1ryr47YjcWqm4TfNUP_y1MQXYATetDaK277wdGehiJu2roYST0OBLR7fVxL--d7maA_gWNFwKA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1849689208</pqid></control><display><type>article</type><title>A Data Fusion Approach to Enhance Association Study in Epilepsy</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Marini, Simone ; Limongelli, Ivan ; Rizzo, Ettore ; Malovini, Alberto ; Errichiello, Edoardo ; Vetro, Annalisa ; Da, Tan ; Zuffardi, Orsetta ; Bellazzi, Riccardo</creator><creatorcontrib>Marini, Simone ; Limongelli, Ivan ; Rizzo, Ettore ; Malovini, Alberto ; Errichiello, Edoardo ; Vetro, Annalisa ; Da, Tan ; Zuffardi, Orsetta ; Bellazzi, Riccardo</creatorcontrib><description>Among the scientific challenges posed by complex diseases with a strong genetic component, two stand out. One is unveiling the role of rare and common genetic variants; the other is the design of classification models to improve clinical diagnosis and predictive models for prognosis and personalized therapies. In this paper, we present a data fusion framework merging gene, domain, pathway and protein-protein interaction data related to a next generation sequencing epilepsy gene panel. Our method allows integrating association information from multiple genomic sources and aims at highlighting the set of common and rare variants that are capable to trigger the occurrence of a complex disease. When compared to other approaches, our method shows better performances in classifying patients affected by epilepsy.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0164940</identifier><identifier>PMID: 27984588</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Bioinformatics ; Biology and Life Sciences ; Biomedical engineering ; Computational Biology - methods ; Data integration ; Epilepsy ; Epilepsy - genetics ; Gene Regulatory Networks ; Gene sequencing ; Genes ; Genetic aspects ; Genetic Association Studies - methods ; Genetic diversity ; Genetic Predisposition to Disease ; Genetic susceptibility ; Genetic variance ; Genetic Variation ; Genetics ; Genomes ; High-Throughput Nucleotide Sequencing - methods ; Humans ; Medicine and Health Sciences ; Methods ; Multisensor fusion ; Multivariate analysis ; Mutation ; Physical Sciences ; Power ; Prediction models ; Protein interaction ; Protein Interaction Maps ; Protein-protein interactions ; Proteins ; Research and Analysis Methods ; Risk factors ; Social Sciences ; Studies</subject><ispartof>PloS one, 2016-12, Vol.11 (12), p.e0164940-e0164940</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Marini et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Marini et al 2016 Marini et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c835t-13a11589996bd8db392908a50d37b4d133660f5a09a1a3b413d2f76172e6a0513</citedby><cites>FETCH-LOGICAL-c835t-13a11589996bd8db392908a50d37b4d133660f5a09a1a3b413d2f76172e6a0513</cites><orcidid>0000-0002-5704-3533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5161322/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5161322/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27984588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marini, Simone</creatorcontrib><creatorcontrib>Limongelli, Ivan</creatorcontrib><creatorcontrib>Rizzo, Ettore</creatorcontrib><creatorcontrib>Malovini, Alberto</creatorcontrib><creatorcontrib>Errichiello, Edoardo</creatorcontrib><creatorcontrib>Vetro, Annalisa</creatorcontrib><creatorcontrib>Da, Tan</creatorcontrib><creatorcontrib>Zuffardi, Orsetta</creatorcontrib><creatorcontrib>Bellazzi, Riccardo</creatorcontrib><title>A Data Fusion Approach to Enhance Association Study in Epilepsy</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Among the scientific challenges posed by complex diseases with a strong genetic component, two stand out. One is unveiling the role of rare and common genetic variants; the other is the design of classification models to improve clinical diagnosis and predictive models for prognosis and personalized therapies. In this paper, we present a data fusion framework merging gene, domain, pathway and protein-protein interaction data related to a next generation sequencing epilepsy gene panel. Our method allows integrating association information from multiple genomic sources and aims at highlighting the set of common and rare variants that are capable to trigger the occurrence of a complex disease. When compared to other approaches, our method shows better performances in classifying patients affected by epilepsy.</description><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Computational Biology - methods</subject><subject>Data integration</subject><subject>Epilepsy</subject><subject>Epilepsy - genetics</subject><subject>Gene Regulatory Networks</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic Association Studies - methods</subject><subject>Genetic diversity</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic susceptibility</subject><subject>Genetic variance</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Genomes</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humans</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Multisensor fusion</subject><subject>Multivariate analysis</subject><subject>Mutation</subject><subject>Physical Sciences</subject><subject>Power</subject><subject>Prediction models</subject><subject>Protein interaction</subject><subject>Protein Interaction Maps</subject><subject>Protein-protein interactions</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Risk factors</subject><subject>Social Sciences</subject><subject>Studies</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7kW_gWhBEH2YMfcmL8qwzurAwoKrvobTNJnp0Glq08rOtzd1ustU9mHJQ0LO7_xzLjlJ8gqjOaYZ_rj1fVtDNW98becIC6YYepKcYkXJTBBEnx6dT5KzELYIcSqFeJ6ckExJxqU8TT4v0i_QQXrZh9LX6aJpWg9mk3Y-XdYbqI1NFyF4U0I32G-6vtinZZ0um7KyTdi_SJ45qIJ9Oe7nyc_L5Y-Lb7Or66-ri8XVzEjKuxmmgDGXSimRF7LIqSIKSeCooFnOCkypEMhxQAow0JxhWhCXCZwRKwBxTM-TNwfdpvJBj7kHjSVTQiqCZCRWB6LwsNVNW-6g3WsPpf534du1hrYrTWW1cEZJUkjnwDLJhOQZUU5wjlBeIOai1qfxtT7f2cLYumuhmohOLXW50Wv_R3MsMCUkCrwfBVr_u7eh07syGFtVUFvfD3FzxbLYEPYYlIhYLDYU4e1_6MOFGKk1xFzL2vkYohlE9YJlDGVSkIGaP0DFVdhdaeKfcrHBU4cPE4fIdPa2W0Mfgl7dfH88e_1ryr47YjcWqm4TfNUP_y1MQXYATetDaK277wdGehiJu2roYST0OBLR7fVxL--d7maA_gWNFwKA</recordid><startdate>20161216</startdate><enddate>20161216</enddate><creator>Marini, Simone</creator><creator>Limongelli, Ivan</creator><creator>Rizzo, Ettore</creator><creator>Malovini, Alberto</creator><creator>Errichiello, Edoardo</creator><creator>Vetro, Annalisa</creator><creator>Da, Tan</creator><creator>Zuffardi, Orsetta</creator><creator>Bellazzi, Riccardo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5704-3533</orcidid></search><sort><creationdate>20161216</creationdate><title>A Data Fusion Approach to Enhance Association Study in Epilepsy</title><author>Marini, Simone ; Limongelli, Ivan ; Rizzo, Ettore ; Malovini, Alberto ; Errichiello, Edoardo ; Vetro, Annalisa ; Da, Tan ; Zuffardi, Orsetta ; Bellazzi, Riccardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c835t-13a11589996bd8db392908a50d37b4d133660f5a09a1a3b413d2f76172e6a0513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Computational Biology - methods</topic><topic>Data integration</topic><topic>Epilepsy</topic><topic>Epilepsy - genetics</topic><topic>Gene Regulatory Networks</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic Association Studies - methods</topic><topic>Genetic diversity</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic susceptibility</topic><topic>Genetic variance</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Genomes</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humans</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Multisensor fusion</topic><topic>Multivariate analysis</topic><topic>Mutation</topic><topic>Physical Sciences</topic><topic>Power</topic><topic>Prediction models</topic><topic>Protein interaction</topic><topic>Protein Interaction Maps</topic><topic>Protein-protein interactions</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Risk factors</topic><topic>Social Sciences</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marini, Simone</creatorcontrib><creatorcontrib>Limongelli, Ivan</creatorcontrib><creatorcontrib>Rizzo, Ettore</creatorcontrib><creatorcontrib>Malovini, Alberto</creatorcontrib><creatorcontrib>Errichiello, Edoardo</creatorcontrib><creatorcontrib>Vetro, Annalisa</creatorcontrib><creatorcontrib>Da, Tan</creatorcontrib><creatorcontrib>Zuffardi, Orsetta</creatorcontrib><creatorcontrib>Bellazzi, Riccardo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marini, Simone</au><au>Limongelli, Ivan</au><au>Rizzo, Ettore</au><au>Malovini, Alberto</au><au>Errichiello, Edoardo</au><au>Vetro, Annalisa</au><au>Da, Tan</au><au>Zuffardi, Orsetta</au><au>Bellazzi, Riccardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data Fusion Approach to Enhance Association Study in Epilepsy</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-12-16</date><risdate>2016</risdate><volume>11</volume><issue>12</issue><spage>e0164940</spage><epage>e0164940</epage><pages>e0164940-e0164940</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Among the scientific challenges posed by complex diseases with a strong genetic component, two stand out. One is unveiling the role of rare and common genetic variants; the other is the design of classification models to improve clinical diagnosis and predictive models for prognosis and personalized therapies. In this paper, we present a data fusion framework merging gene, domain, pathway and protein-protein interaction data related to a next generation sequencing epilepsy gene panel. Our method allows integrating association information from multiple genomic sources and aims at highlighting the set of common and rare variants that are capable to trigger the occurrence of a complex disease. When compared to other approaches, our method shows better performances in classifying patients affected by epilepsy.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27984588</pmid><doi>10.1371/journal.pone.0164940</doi><tpages>e0164940</tpages><orcidid>https://orcid.org/0000-0002-5704-3533</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-12, Vol.11 (12), p.e0164940-e0164940 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1849689208 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Algorithms Bioinformatics Biology and Life Sciences Biomedical engineering Computational Biology - methods Data integration Epilepsy Epilepsy - genetics Gene Regulatory Networks Gene sequencing Genes Genetic aspects Genetic Association Studies - methods Genetic diversity Genetic Predisposition to Disease Genetic susceptibility Genetic variance Genetic Variation Genetics Genomes High-Throughput Nucleotide Sequencing - methods Humans Medicine and Health Sciences Methods Multisensor fusion Multivariate analysis Mutation Physical Sciences Power Prediction models Protein interaction Protein Interaction Maps Protein-protein interactions Proteins Research and Analysis Methods Risk factors Social Sciences Studies |
title | A Data Fusion Approach to Enhance Association Study in Epilepsy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A40%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data%20Fusion%20Approach%20to%20Enhance%20Association%20Study%20in%20Epilepsy&rft.jtitle=PloS%20one&rft.au=Marini,%20Simone&rft.date=2016-12-16&rft.volume=11&rft.issue=12&rft.spage=e0164940&rft.epage=e0164940&rft.pages=e0164940-e0164940&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0164940&rft_dat=%3Cgale_plos_%3EA474078628%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1849689208&rft_id=info:pmid/27984588&rft_galeid=A474078628&rft_doaj_id=oai_doaj_org_article_6fc982d8ffae484685729f65500bd04f&rfr_iscdi=true |