A Data Fusion Approach to Enhance Association Study in Epilepsy

Among the scientific challenges posed by complex diseases with a strong genetic component, two stand out. One is unveiling the role of rare and common genetic variants; the other is the design of classification models to improve clinical diagnosis and predictive models for prognosis and personalized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-12, Vol.11 (12), p.e0164940-e0164940
Hauptverfasser: Marini, Simone, Limongelli, Ivan, Rizzo, Ettore, Malovini, Alberto, Errichiello, Edoardo, Vetro, Annalisa, Da, Tan, Zuffardi, Orsetta, Bellazzi, Riccardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0164940
container_issue 12
container_start_page e0164940
container_title PloS one
container_volume 11
creator Marini, Simone
Limongelli, Ivan
Rizzo, Ettore
Malovini, Alberto
Errichiello, Edoardo
Vetro, Annalisa
Da, Tan
Zuffardi, Orsetta
Bellazzi, Riccardo
description Among the scientific challenges posed by complex diseases with a strong genetic component, two stand out. One is unveiling the role of rare and common genetic variants; the other is the design of classification models to improve clinical diagnosis and predictive models for prognosis and personalized therapies. In this paper, we present a data fusion framework merging gene, domain, pathway and protein-protein interaction data related to a next generation sequencing epilepsy gene panel. Our method allows integrating association information from multiple genomic sources and aims at highlighting the set of common and rare variants that are capable to trigger the occurrence of a complex disease. When compared to other approaches, our method shows better performances in classifying patients affected by epilepsy.
doi_str_mv 10.1371/journal.pone.0164940
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1849689208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A474078628</galeid><doaj_id>oai_doaj_org_article_6fc982d8ffae484685729f65500bd04f</doaj_id><sourcerecordid>A474078628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c835t-13a11589996bd8db392908a50d37b4d133660f5a09a1a3b413d2f76172e6a0513</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7kW_gWhBEH2YMfcmL8qwzurAwoKrvobTNJnp0Glq08rOtzd1ustU9mHJQ0LO7_xzLjlJ8gqjOaYZ_rj1fVtDNW98becIC6YYepKcYkXJTBBEnx6dT5KzELYIcSqFeJ6ckExJxqU8TT4v0i_QQXrZh9LX6aJpWg9mk3Y-XdYbqI1NFyF4U0I32G-6vtinZZ0um7KyTdi_SJ45qIJ9Oe7nyc_L5Y-Lb7Or66-ri8XVzEjKuxmmgDGXSimRF7LIqSIKSeCooFnOCkypEMhxQAow0JxhWhCXCZwRKwBxTM-TNwfdpvJBj7kHjSVTQiqCZCRWB6LwsNVNW-6g3WsPpf534du1hrYrTWW1cEZJUkjnwDLJhOQZUU5wjlBeIOai1qfxtT7f2cLYumuhmohOLXW50Wv_R3MsMCUkCrwfBVr_u7eh07syGFtVUFvfD3FzxbLYEPYYlIhYLDYU4e1_6MOFGKk1xFzL2vkYohlE9YJlDGVSkIGaP0DFVdhdaeKfcrHBU4cPE4fIdPa2W0Mfgl7dfH88e_1ryr47YjcWqm4TfNUP_y1MQXYATetDaK277wdGehiJu2roYST0OBLR7fVxL--d7maA_gWNFwKA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1849689208</pqid></control><display><type>article</type><title>A Data Fusion Approach to Enhance Association Study in Epilepsy</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Marini, Simone ; Limongelli, Ivan ; Rizzo, Ettore ; Malovini, Alberto ; Errichiello, Edoardo ; Vetro, Annalisa ; Da, Tan ; Zuffardi, Orsetta ; Bellazzi, Riccardo</creator><creatorcontrib>Marini, Simone ; Limongelli, Ivan ; Rizzo, Ettore ; Malovini, Alberto ; Errichiello, Edoardo ; Vetro, Annalisa ; Da, Tan ; Zuffardi, Orsetta ; Bellazzi, Riccardo</creatorcontrib><description>Among the scientific challenges posed by complex diseases with a strong genetic component, two stand out. One is unveiling the role of rare and common genetic variants; the other is the design of classification models to improve clinical diagnosis and predictive models for prognosis and personalized therapies. In this paper, we present a data fusion framework merging gene, domain, pathway and protein-protein interaction data related to a next generation sequencing epilepsy gene panel. Our method allows integrating association information from multiple genomic sources and aims at highlighting the set of common and rare variants that are capable to trigger the occurrence of a complex disease. When compared to other approaches, our method shows better performances in classifying patients affected by epilepsy.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0164940</identifier><identifier>PMID: 27984588</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Bioinformatics ; Biology and Life Sciences ; Biomedical engineering ; Computational Biology - methods ; Data integration ; Epilepsy ; Epilepsy - genetics ; Gene Regulatory Networks ; Gene sequencing ; Genes ; Genetic aspects ; Genetic Association Studies - methods ; Genetic diversity ; Genetic Predisposition to Disease ; Genetic susceptibility ; Genetic variance ; Genetic Variation ; Genetics ; Genomes ; High-Throughput Nucleotide Sequencing - methods ; Humans ; Medicine and Health Sciences ; Methods ; Multisensor fusion ; Multivariate analysis ; Mutation ; Physical Sciences ; Power ; Prediction models ; Protein interaction ; Protein Interaction Maps ; Protein-protein interactions ; Proteins ; Research and Analysis Methods ; Risk factors ; Social Sciences ; Studies</subject><ispartof>PloS one, 2016-12, Vol.11 (12), p.e0164940-e0164940</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Marini et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Marini et al 2016 Marini et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c835t-13a11589996bd8db392908a50d37b4d133660f5a09a1a3b413d2f76172e6a0513</citedby><cites>FETCH-LOGICAL-c835t-13a11589996bd8db392908a50d37b4d133660f5a09a1a3b413d2f76172e6a0513</cites><orcidid>0000-0002-5704-3533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5161322/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5161322/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27984588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marini, Simone</creatorcontrib><creatorcontrib>Limongelli, Ivan</creatorcontrib><creatorcontrib>Rizzo, Ettore</creatorcontrib><creatorcontrib>Malovini, Alberto</creatorcontrib><creatorcontrib>Errichiello, Edoardo</creatorcontrib><creatorcontrib>Vetro, Annalisa</creatorcontrib><creatorcontrib>Da, Tan</creatorcontrib><creatorcontrib>Zuffardi, Orsetta</creatorcontrib><creatorcontrib>Bellazzi, Riccardo</creatorcontrib><title>A Data Fusion Approach to Enhance Association Study in Epilepsy</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Among the scientific challenges posed by complex diseases with a strong genetic component, two stand out. One is unveiling the role of rare and common genetic variants; the other is the design of classification models to improve clinical diagnosis and predictive models for prognosis and personalized therapies. In this paper, we present a data fusion framework merging gene, domain, pathway and protein-protein interaction data related to a next generation sequencing epilepsy gene panel. Our method allows integrating association information from multiple genomic sources and aims at highlighting the set of common and rare variants that are capable to trigger the occurrence of a complex disease. When compared to other approaches, our method shows better performances in classifying patients affected by epilepsy.</description><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Computational Biology - methods</subject><subject>Data integration</subject><subject>Epilepsy</subject><subject>Epilepsy - genetics</subject><subject>Gene Regulatory Networks</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic Association Studies - methods</subject><subject>Genetic diversity</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic susceptibility</subject><subject>Genetic variance</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Genomes</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humans</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Multisensor fusion</subject><subject>Multivariate analysis</subject><subject>Mutation</subject><subject>Physical Sciences</subject><subject>Power</subject><subject>Prediction models</subject><subject>Protein interaction</subject><subject>Protein Interaction Maps</subject><subject>Protein-protein interactions</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Risk factors</subject><subject>Social Sciences</subject><subject>Studies</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7kW_gWhBEH2YMfcmL8qwzurAwoKrvobTNJnp0Glq08rOtzd1ustU9mHJQ0LO7_xzLjlJ8gqjOaYZ_rj1fVtDNW98becIC6YYepKcYkXJTBBEnx6dT5KzELYIcSqFeJ6ckExJxqU8TT4v0i_QQXrZh9LX6aJpWg9mk3Y-XdYbqI1NFyF4U0I32G-6vtinZZ0um7KyTdi_SJ45qIJ9Oe7nyc_L5Y-Lb7Or66-ri8XVzEjKuxmmgDGXSimRF7LIqSIKSeCooFnOCkypEMhxQAow0JxhWhCXCZwRKwBxTM-TNwfdpvJBj7kHjSVTQiqCZCRWB6LwsNVNW-6g3WsPpf534du1hrYrTWW1cEZJUkjnwDLJhOQZUU5wjlBeIOai1qfxtT7f2cLYumuhmohOLXW50Wv_R3MsMCUkCrwfBVr_u7eh07syGFtVUFvfD3FzxbLYEPYYlIhYLDYU4e1_6MOFGKk1xFzL2vkYohlE9YJlDGVSkIGaP0DFVdhdaeKfcrHBU4cPE4fIdPa2W0Mfgl7dfH88e_1ryr47YjcWqm4TfNUP_y1MQXYATetDaK277wdGehiJu2roYST0OBLR7fVxL--d7maA_gWNFwKA</recordid><startdate>20161216</startdate><enddate>20161216</enddate><creator>Marini, Simone</creator><creator>Limongelli, Ivan</creator><creator>Rizzo, Ettore</creator><creator>Malovini, Alberto</creator><creator>Errichiello, Edoardo</creator><creator>Vetro, Annalisa</creator><creator>Da, Tan</creator><creator>Zuffardi, Orsetta</creator><creator>Bellazzi, Riccardo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5704-3533</orcidid></search><sort><creationdate>20161216</creationdate><title>A Data Fusion Approach to Enhance Association Study in Epilepsy</title><author>Marini, Simone ; Limongelli, Ivan ; Rizzo, Ettore ; Malovini, Alberto ; Errichiello, Edoardo ; Vetro, Annalisa ; Da, Tan ; Zuffardi, Orsetta ; Bellazzi, Riccardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c835t-13a11589996bd8db392908a50d37b4d133660f5a09a1a3b413d2f76172e6a0513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Computational Biology - methods</topic><topic>Data integration</topic><topic>Epilepsy</topic><topic>Epilepsy - genetics</topic><topic>Gene Regulatory Networks</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic Association Studies - methods</topic><topic>Genetic diversity</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic susceptibility</topic><topic>Genetic variance</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Genomes</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humans</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Multisensor fusion</topic><topic>Multivariate analysis</topic><topic>Mutation</topic><topic>Physical Sciences</topic><topic>Power</topic><topic>Prediction models</topic><topic>Protein interaction</topic><topic>Protein Interaction Maps</topic><topic>Protein-protein interactions</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Risk factors</topic><topic>Social Sciences</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marini, Simone</creatorcontrib><creatorcontrib>Limongelli, Ivan</creatorcontrib><creatorcontrib>Rizzo, Ettore</creatorcontrib><creatorcontrib>Malovini, Alberto</creatorcontrib><creatorcontrib>Errichiello, Edoardo</creatorcontrib><creatorcontrib>Vetro, Annalisa</creatorcontrib><creatorcontrib>Da, Tan</creatorcontrib><creatorcontrib>Zuffardi, Orsetta</creatorcontrib><creatorcontrib>Bellazzi, Riccardo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marini, Simone</au><au>Limongelli, Ivan</au><au>Rizzo, Ettore</au><au>Malovini, Alberto</au><au>Errichiello, Edoardo</au><au>Vetro, Annalisa</au><au>Da, Tan</au><au>Zuffardi, Orsetta</au><au>Bellazzi, Riccardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data Fusion Approach to Enhance Association Study in Epilepsy</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-12-16</date><risdate>2016</risdate><volume>11</volume><issue>12</issue><spage>e0164940</spage><epage>e0164940</epage><pages>e0164940-e0164940</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Among the scientific challenges posed by complex diseases with a strong genetic component, two stand out. One is unveiling the role of rare and common genetic variants; the other is the design of classification models to improve clinical diagnosis and predictive models for prognosis and personalized therapies. In this paper, we present a data fusion framework merging gene, domain, pathway and protein-protein interaction data related to a next generation sequencing epilepsy gene panel. Our method allows integrating association information from multiple genomic sources and aims at highlighting the set of common and rare variants that are capable to trigger the occurrence of a complex disease. When compared to other approaches, our method shows better performances in classifying patients affected by epilepsy.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27984588</pmid><doi>10.1371/journal.pone.0164940</doi><tpages>e0164940</tpages><orcidid>https://orcid.org/0000-0002-5704-3533</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-12, Vol.11 (12), p.e0164940-e0164940
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1849689208
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Algorithms
Bioinformatics
Biology and Life Sciences
Biomedical engineering
Computational Biology - methods
Data integration
Epilepsy
Epilepsy - genetics
Gene Regulatory Networks
Gene sequencing
Genes
Genetic aspects
Genetic Association Studies - methods
Genetic diversity
Genetic Predisposition to Disease
Genetic susceptibility
Genetic variance
Genetic Variation
Genetics
Genomes
High-Throughput Nucleotide Sequencing - methods
Humans
Medicine and Health Sciences
Methods
Multisensor fusion
Multivariate analysis
Mutation
Physical Sciences
Power
Prediction models
Protein interaction
Protein Interaction Maps
Protein-protein interactions
Proteins
Research and Analysis Methods
Risk factors
Social Sciences
Studies
title A Data Fusion Approach to Enhance Association Study in Epilepsy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A40%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data%20Fusion%20Approach%20to%20Enhance%20Association%20Study%20in%20Epilepsy&rft.jtitle=PloS%20one&rft.au=Marini,%20Simone&rft.date=2016-12-16&rft.volume=11&rft.issue=12&rft.spage=e0164940&rft.epage=e0164940&rft.pages=e0164940-e0164940&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0164940&rft_dat=%3Cgale_plos_%3EA474078628%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1849689208&rft_id=info:pmid/27984588&rft_galeid=A474078628&rft_doaj_id=oai_doaj_org_article_6fc982d8ffae484685729f65500bd04f&rfr_iscdi=true