Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline

Ciliopathies represent a broad class of disorders that affect multiple organ systems. The craniofacial complex is among those most severely affected when primary cilia are not functional. We previously reported that loss of primary cilia on cranial neural crest cells, via a conditional knockout of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2016-11, Vol.12 (11), p.e1006351-e1006351
Hauptverfasser: Chang, Ching-Fang, Chang, Ya-Ting, Millington, Grethel, Brugmann, Samantha A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1006351
container_issue 11
container_start_page e1006351
container_title PLoS genetics
container_volume 12
creator Chang, Ching-Fang
Chang, Ya-Ting
Millington, Grethel
Brugmann, Samantha A
description Ciliopathies represent a broad class of disorders that affect multiple organ systems. The craniofacial complex is among those most severely affected when primary cilia are not functional. We previously reported that loss of primary cilia on cranial neural crest cells, via a conditional knockout of the intraflagellar transport protein KIF3a, resulted in midfacial widening due to a gain of Hedgehog (HH) activity. Here, we examine the molecular mechanism of how a loss of primary cilia can produce facial phenotypes associated with a gain of HH function. We show that loss of intraflagellar transport proteins (KIF3a or IFT88) caused aberrant GLI processing such that the amount of GLI3FL and GLI2FL was increased, thus skewing the ratio of GLIFL to GLIR in favor of the FL isoform. Genetic addition of GLI3R partially rescued the ciliopathic midfacial widening. Interestingly, despite several previous studies suggesting midfacial development relies heavily on GLI3R activity, the conditional loss of GLI3 alone did not reproduce the ciliopathic phenotype. Only the combined loss of both GLI2 and GLI3 was able to phenocopy the ciliopathic midfacial appearance. Our findings suggest that ciliopathic facial phenotypes are generated via loss of both GLI3R and GLI2R and that this pathology occurs via a de-repression mechanism. Furthermore, these studies suggest a novel role for GLI2R in craniofacial development.
doi_str_mv 10.1371/journal.pgen.1006351
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1849657856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478272685</galeid><doaj_id>oai_doaj_org_article_7e81d240408e4dbbac9c1f8ff09f6620</doaj_id><sourcerecordid>A478272685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c759t-90ac74d1c78b126f79d9831097dd5a240f5e8000ff6aeeb7db9f124b939661173</originalsourceid><addsrcrecordid>eNqVk9Fu0zAUhiMEYmPwBggiISG4aLETO7ZvJk2FjUqFoQ24tRznuPWUxpmdTPD2ODSbGjQJkC_iHH__b_scnyR5jtEc5wy_u3K9b1Q9b9fQzDFCRU7xg-QQU5rPGEHk4d78IHkSwhVCOeWCPU4OMsZRlrHiMGkXXjXWGaWtqtOFra1rVbexENILuIEYu2xBW2N1_L_urYctNF1IjfPp2WqZfvGuA9uEtOq9bdbp-yiqXTtAqTNpt4H0dOf9yVa1beBp8sioOsCz8XuUfDv98HXxcbY6P1suTlYzzajoZgIpzUiFNeMlzgrDRCV4jpFgVUVVRpChwBFCxhQKoGRVKQzOSClyURQYs_woebnzbWsX5JisIDEnoqCM0yISyx1ROXUlW2-3yv-UTln5O-D8WirfWV2DZMBxFTcliAOpylJpobHhxiBhiiJD0et43K0vt1DpeH2v6onpdKWxG7l2N5KiWBGSR4M3o4F31z2ETm5t0FDXqgHXD-emgjA0lPnvaE6EYBRlEX31B3p_IkZqreJdbWNcPKIeTOUJYTxjWcFppOb3UHFUsLXaNWBsjE8EbyeCyHTwo1urPgS5vLz4D_bzv7Pn36fs6z12E99ztwmu7jvrmjAFyQ7U3oXgwdzVDiM59Ntt5uTQb3Lstyh7sV_3O9Ftg-W_ANQ_JCI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1849657856</pqid></control><display><type>article</type><title>Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Chang, Ching-Fang ; Chang, Ya-Ting ; Millington, Grethel ; Brugmann, Samantha A</creator><contributor>Wilkie, Andrew O. M.</contributor><creatorcontrib>Chang, Ching-Fang ; Chang, Ya-Ting ; Millington, Grethel ; Brugmann, Samantha A ; Wilkie, Andrew O. M.</creatorcontrib><description>Ciliopathies represent a broad class of disorders that affect multiple organ systems. The craniofacial complex is among those most severely affected when primary cilia are not functional. We previously reported that loss of primary cilia on cranial neural crest cells, via a conditional knockout of the intraflagellar transport protein KIF3a, resulted in midfacial widening due to a gain of Hedgehog (HH) activity. Here, we examine the molecular mechanism of how a loss of primary cilia can produce facial phenotypes associated with a gain of HH function. We show that loss of intraflagellar transport proteins (KIF3a or IFT88) caused aberrant GLI processing such that the amount of GLI3FL and GLI2FL was increased, thus skewing the ratio of GLIFL to GLIR in favor of the FL isoform. Genetic addition of GLI3R partially rescued the ciliopathic midfacial widening. Interestingly, despite several previous studies suggesting midfacial development relies heavily on GLI3R activity, the conditional loss of GLI3 alone did not reproduce the ciliopathic phenotype. Only the combined loss of both GLI2 and GLI3 was able to phenocopy the ciliopathic midfacial appearance. Our findings suggest that ciliopathic facial phenotypes are generated via loss of both GLI3R and GLI2R and that this pathology occurs via a de-repression mechanism. Furthermore, these studies suggest a novel role for GLI2R in craniofacial development.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1006351</identifier><identifier>PMID: 27802276</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology and Life Sciences ; Children &amp; youth ; Cilia - genetics ; Cilia - pathology ; Ciliopathies - genetics ; Ciliopathies - pathology ; Developmental biology ; Experiments ; Face - embryology ; Face - pathology ; Funding ; Gene Expression Regulation, Developmental ; Genotype &amp; phenotype ; Kinesin - genetics ; Kruppel-Like Transcription Factors - genetics ; Mice ; Mice, Transgenic ; Nerve Tissue Proteins - genetics ; Observations ; Pediatrics ; Phenotype ; Protein Isoforms - genetics ; Protein Modification, Translational - genetics ; Protein-protein interactions ; Proteins ; Research and Analysis Methods ; Rodents ; Signal Transduction - genetics ; Studies ; Zinc Finger Protein Gli2 ; Zinc Finger Protein Gli3</subject><ispartof>PLoS genetics, 2016-11, Vol.12 (11), p.e1006351-e1006351</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Chang C-F, Chang Y-T, Millington G, Brugmann SA (2016) Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline. PLoS Genet 12(11): e1006351. doi:10.1371/journal.pgen.1006351</rights><rights>2016 Chang et al 2016 Chang et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Chang C-F, Chang Y-T, Millington G, Brugmann SA (2016) Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline. PLoS Genet 12(11): e1006351. doi:10.1371/journal.pgen.1006351</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c759t-90ac74d1c78b126f79d9831097dd5a240f5e8000ff6aeeb7db9f124b939661173</citedby><cites>FETCH-LOGICAL-c759t-90ac74d1c78b126f79d9831097dd5a240f5e8000ff6aeeb7db9f124b939661173</cites><orcidid>0000-0001-6941-6416 ; 0000-0002-3884-7157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5089743/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5089743/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27802276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wilkie, Andrew O. M.</contributor><creatorcontrib>Chang, Ching-Fang</creatorcontrib><creatorcontrib>Chang, Ya-Ting</creatorcontrib><creatorcontrib>Millington, Grethel</creatorcontrib><creatorcontrib>Brugmann, Samantha A</creatorcontrib><title>Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Ciliopathies represent a broad class of disorders that affect multiple organ systems. The craniofacial complex is among those most severely affected when primary cilia are not functional. We previously reported that loss of primary cilia on cranial neural crest cells, via a conditional knockout of the intraflagellar transport protein KIF3a, resulted in midfacial widening due to a gain of Hedgehog (HH) activity. Here, we examine the molecular mechanism of how a loss of primary cilia can produce facial phenotypes associated with a gain of HH function. We show that loss of intraflagellar transport proteins (KIF3a or IFT88) caused aberrant GLI processing such that the amount of GLI3FL and GLI2FL was increased, thus skewing the ratio of GLIFL to GLIR in favor of the FL isoform. Genetic addition of GLI3R partially rescued the ciliopathic midfacial widening. Interestingly, despite several previous studies suggesting midfacial development relies heavily on GLI3R activity, the conditional loss of GLI3 alone did not reproduce the ciliopathic phenotype. Only the combined loss of both GLI2 and GLI3 was able to phenocopy the ciliopathic midfacial appearance. Our findings suggest that ciliopathic facial phenotypes are generated via loss of both GLI3R and GLI2R and that this pathology occurs via a de-repression mechanism. Furthermore, these studies suggest a novel role for GLI2R in craniofacial development.</description><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Children &amp; youth</subject><subject>Cilia - genetics</subject><subject>Cilia - pathology</subject><subject>Ciliopathies - genetics</subject><subject>Ciliopathies - pathology</subject><subject>Developmental biology</subject><subject>Experiments</subject><subject>Face - embryology</subject><subject>Face - pathology</subject><subject>Funding</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genotype &amp; phenotype</subject><subject>Kinesin - genetics</subject><subject>Kruppel-Like Transcription Factors - genetics</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Observations</subject><subject>Pediatrics</subject><subject>Phenotype</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Modification, Translational - genetics</subject><subject>Protein-protein interactions</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Rodents</subject><subject>Signal Transduction - genetics</subject><subject>Studies</subject><subject>Zinc Finger Protein Gli2</subject><subject>Zinc Finger Protein Gli3</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9Fu0zAUhiMEYmPwBggiISG4aLETO7ZvJk2FjUqFoQ24tRznuPWUxpmdTPD2ODSbGjQJkC_iHH__b_scnyR5jtEc5wy_u3K9b1Q9b9fQzDFCRU7xg-QQU5rPGEHk4d78IHkSwhVCOeWCPU4OMsZRlrHiMGkXXjXWGaWtqtOFra1rVbexENILuIEYu2xBW2N1_L_urYctNF1IjfPp2WqZfvGuA9uEtOq9bdbp-yiqXTtAqTNpt4H0dOf9yVa1beBp8sioOsCz8XuUfDv98HXxcbY6P1suTlYzzajoZgIpzUiFNeMlzgrDRCV4jpFgVUVVRpChwBFCxhQKoGRVKQzOSClyURQYs_woebnzbWsX5JisIDEnoqCM0yISyx1ROXUlW2-3yv-UTln5O-D8WirfWV2DZMBxFTcliAOpylJpobHhxiBhiiJD0et43K0vt1DpeH2v6onpdKWxG7l2N5KiWBGSR4M3o4F31z2ETm5t0FDXqgHXD-emgjA0lPnvaE6EYBRlEX31B3p_IkZqreJdbWNcPKIeTOUJYTxjWcFppOb3UHFUsLXaNWBsjE8EbyeCyHTwo1urPgS5vLz4D_bzv7Pn36fs6z12E99ztwmu7jvrmjAFyQ7U3oXgwdzVDiM59Ntt5uTQb3Lstyh7sV_3O9Ftg-W_ANQ_JCI</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Chang, Ching-Fang</creator><creator>Chang, Ya-Ting</creator><creator>Millington, Grethel</creator><creator>Brugmann, Samantha A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6941-6416</orcidid><orcidid>https://orcid.org/0000-0002-3884-7157</orcidid></search><sort><creationdate>201611</creationdate><title>Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline</title><author>Chang, Ching-Fang ; Chang, Ya-Ting ; Millington, Grethel ; Brugmann, Samantha A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c759t-90ac74d1c78b126f79d9831097dd5a240f5e8000ff6aeeb7db9f124b939661173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Children &amp; youth</topic><topic>Cilia - genetics</topic><topic>Cilia - pathology</topic><topic>Ciliopathies - genetics</topic><topic>Ciliopathies - pathology</topic><topic>Developmental biology</topic><topic>Experiments</topic><topic>Face - embryology</topic><topic>Face - pathology</topic><topic>Funding</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genotype &amp; phenotype</topic><topic>Kinesin - genetics</topic><topic>Kruppel-Like Transcription Factors - genetics</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Observations</topic><topic>Pediatrics</topic><topic>Phenotype</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Modification, Translational - genetics</topic><topic>Protein-protein interactions</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Rodents</topic><topic>Signal Transduction - genetics</topic><topic>Studies</topic><topic>Zinc Finger Protein Gli2</topic><topic>Zinc Finger Protein Gli3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Ching-Fang</creatorcontrib><creatorcontrib>Chang, Ya-Ting</creatorcontrib><creatorcontrib>Millington, Grethel</creatorcontrib><creatorcontrib>Brugmann, Samantha A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Ching-Fang</au><au>Chang, Ya-Ting</au><au>Millington, Grethel</au><au>Brugmann, Samantha A</au><au>Wilkie, Andrew O. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2016-11</date><risdate>2016</risdate><volume>12</volume><issue>11</issue><spage>e1006351</spage><epage>e1006351</epage><pages>e1006351-e1006351</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Ciliopathies represent a broad class of disorders that affect multiple organ systems. The craniofacial complex is among those most severely affected when primary cilia are not functional. We previously reported that loss of primary cilia on cranial neural crest cells, via a conditional knockout of the intraflagellar transport protein KIF3a, resulted in midfacial widening due to a gain of Hedgehog (HH) activity. Here, we examine the molecular mechanism of how a loss of primary cilia can produce facial phenotypes associated with a gain of HH function. We show that loss of intraflagellar transport proteins (KIF3a or IFT88) caused aberrant GLI processing such that the amount of GLI3FL and GLI2FL was increased, thus skewing the ratio of GLIFL to GLIR in favor of the FL isoform. Genetic addition of GLI3R partially rescued the ciliopathic midfacial widening. Interestingly, despite several previous studies suggesting midfacial development relies heavily on GLI3R activity, the conditional loss of GLI3 alone did not reproduce the ciliopathic phenotype. Only the combined loss of both GLI2 and GLI3 was able to phenocopy the ciliopathic midfacial appearance. Our findings suggest that ciliopathic facial phenotypes are generated via loss of both GLI3R and GLI2R and that this pathology occurs via a de-repression mechanism. Furthermore, these studies suggest a novel role for GLI2R in craniofacial development.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27802276</pmid><doi>10.1371/journal.pgen.1006351</doi><orcidid>https://orcid.org/0000-0001-6941-6416</orcidid><orcidid>https://orcid.org/0000-0002-3884-7157</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2016-11, Vol.12 (11), p.e1006351-e1006351
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1849657856
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Biology and Life Sciences
Children & youth
Cilia - genetics
Cilia - pathology
Ciliopathies - genetics
Ciliopathies - pathology
Developmental biology
Experiments
Face - embryology
Face - pathology
Funding
Gene Expression Regulation, Developmental
Genotype & phenotype
Kinesin - genetics
Kruppel-Like Transcription Factors - genetics
Mice
Mice, Transgenic
Nerve Tissue Proteins - genetics
Observations
Pediatrics
Phenotype
Protein Isoforms - genetics
Protein Modification, Translational - genetics
Protein-protein interactions
Proteins
Research and Analysis Methods
Rodents
Signal Transduction - genetics
Studies
Zinc Finger Protein Gli2
Zinc Finger Protein Gli3
title Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Craniofacial%20Ciliopathies%20Reveal%20Specific%20Requirements%20for%20GLI%20Proteins%20during%20Development%20of%20the%20Facial%20Midline&rft.jtitle=PLoS%20genetics&rft.au=Chang,%20Ching-Fang&rft.date=2016-11&rft.volume=12&rft.issue=11&rft.spage=e1006351&rft.epage=e1006351&rft.pages=e1006351-e1006351&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1006351&rft_dat=%3Cgale_plos_%3EA478272685%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1849657856&rft_id=info:pmid/27802276&rft_galeid=A478272685&rft_doaj_id=oai_doaj_org_article_7e81d240408e4dbbac9c1f8ff09f6620&rfr_iscdi=true