Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline
Ciliopathies represent a broad class of disorders that affect multiple organ systems. The craniofacial complex is among those most severely affected when primary cilia are not functional. We previously reported that loss of primary cilia on cranial neural crest cells, via a conditional knockout of t...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2016-11, Vol.12 (11), p.e1006351-e1006351 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1006351 |
---|---|
container_issue | 11 |
container_start_page | e1006351 |
container_title | PLoS genetics |
container_volume | 12 |
creator | Chang, Ching-Fang Chang, Ya-Ting Millington, Grethel Brugmann, Samantha A |
description | Ciliopathies represent a broad class of disorders that affect multiple organ systems. The craniofacial complex is among those most severely affected when primary cilia are not functional. We previously reported that loss of primary cilia on cranial neural crest cells, via a conditional knockout of the intraflagellar transport protein KIF3a, resulted in midfacial widening due to a gain of Hedgehog (HH) activity. Here, we examine the molecular mechanism of how a loss of primary cilia can produce facial phenotypes associated with a gain of HH function. We show that loss of intraflagellar transport proteins (KIF3a or IFT88) caused aberrant GLI processing such that the amount of GLI3FL and GLI2FL was increased, thus skewing the ratio of GLIFL to GLIR in favor of the FL isoform. Genetic addition of GLI3R partially rescued the ciliopathic midfacial widening. Interestingly, despite several previous studies suggesting midfacial development relies heavily on GLI3R activity, the conditional loss of GLI3 alone did not reproduce the ciliopathic phenotype. Only the combined loss of both GLI2 and GLI3 was able to phenocopy the ciliopathic midfacial appearance. Our findings suggest that ciliopathic facial phenotypes are generated via loss of both GLI3R and GLI2R and that this pathology occurs via a de-repression mechanism. Furthermore, these studies suggest a novel role for GLI2R in craniofacial development. |
doi_str_mv | 10.1371/journal.pgen.1006351 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1849657856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478272685</galeid><doaj_id>oai_doaj_org_article_7e81d240408e4dbbac9c1f8ff09f6620</doaj_id><sourcerecordid>A478272685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c759t-90ac74d1c78b126f79d9831097dd5a240f5e8000ff6aeeb7db9f124b939661173</originalsourceid><addsrcrecordid>eNqVk9Fu0zAUhiMEYmPwBggiISG4aLETO7ZvJk2FjUqFoQ24tRznuPWUxpmdTPD2ODSbGjQJkC_iHH__b_scnyR5jtEc5wy_u3K9b1Q9b9fQzDFCRU7xg-QQU5rPGEHk4d78IHkSwhVCOeWCPU4OMsZRlrHiMGkXXjXWGaWtqtOFra1rVbexENILuIEYu2xBW2N1_L_urYctNF1IjfPp2WqZfvGuA9uEtOq9bdbp-yiqXTtAqTNpt4H0dOf9yVa1beBp8sioOsCz8XuUfDv98HXxcbY6P1suTlYzzajoZgIpzUiFNeMlzgrDRCV4jpFgVUVVRpChwBFCxhQKoGRVKQzOSClyURQYs_woebnzbWsX5JisIDEnoqCM0yISyx1ROXUlW2-3yv-UTln5O-D8WirfWV2DZMBxFTcliAOpylJpobHhxiBhiiJD0et43K0vt1DpeH2v6onpdKWxG7l2N5KiWBGSR4M3o4F31z2ETm5t0FDXqgHXD-emgjA0lPnvaE6EYBRlEX31B3p_IkZqreJdbWNcPKIeTOUJYTxjWcFppOb3UHFUsLXaNWBsjE8EbyeCyHTwo1urPgS5vLz4D_bzv7Pn36fs6z12E99ztwmu7jvrmjAFyQ7U3oXgwdzVDiM59Ntt5uTQb3Lstyh7sV_3O9Ftg-W_ANQ_JCI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1849657856</pqid></control><display><type>article</type><title>Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Chang, Ching-Fang ; Chang, Ya-Ting ; Millington, Grethel ; Brugmann, Samantha A</creator><contributor>Wilkie, Andrew O. M.</contributor><creatorcontrib>Chang, Ching-Fang ; Chang, Ya-Ting ; Millington, Grethel ; Brugmann, Samantha A ; Wilkie, Andrew O. M.</creatorcontrib><description>Ciliopathies represent a broad class of disorders that affect multiple organ systems. The craniofacial complex is among those most severely affected when primary cilia are not functional. We previously reported that loss of primary cilia on cranial neural crest cells, via a conditional knockout of the intraflagellar transport protein KIF3a, resulted in midfacial widening due to a gain of Hedgehog (HH) activity. Here, we examine the molecular mechanism of how a loss of primary cilia can produce facial phenotypes associated with a gain of HH function. We show that loss of intraflagellar transport proteins (KIF3a or IFT88) caused aberrant GLI processing such that the amount of GLI3FL and GLI2FL was increased, thus skewing the ratio of GLIFL to GLIR in favor of the FL isoform. Genetic addition of GLI3R partially rescued the ciliopathic midfacial widening. Interestingly, despite several previous studies suggesting midfacial development relies heavily on GLI3R activity, the conditional loss of GLI3 alone did not reproduce the ciliopathic phenotype. Only the combined loss of both GLI2 and GLI3 was able to phenocopy the ciliopathic midfacial appearance. Our findings suggest that ciliopathic facial phenotypes are generated via loss of both GLI3R and GLI2R and that this pathology occurs via a de-repression mechanism. Furthermore, these studies suggest a novel role for GLI2R in craniofacial development.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1006351</identifier><identifier>PMID: 27802276</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology and Life Sciences ; Children & youth ; Cilia - genetics ; Cilia - pathology ; Ciliopathies - genetics ; Ciliopathies - pathology ; Developmental biology ; Experiments ; Face - embryology ; Face - pathology ; Funding ; Gene Expression Regulation, Developmental ; Genotype & phenotype ; Kinesin - genetics ; Kruppel-Like Transcription Factors - genetics ; Mice ; Mice, Transgenic ; Nerve Tissue Proteins - genetics ; Observations ; Pediatrics ; Phenotype ; Protein Isoforms - genetics ; Protein Modification, Translational - genetics ; Protein-protein interactions ; Proteins ; Research and Analysis Methods ; Rodents ; Signal Transduction - genetics ; Studies ; Zinc Finger Protein Gli2 ; Zinc Finger Protein Gli3</subject><ispartof>PLoS genetics, 2016-11, Vol.12 (11), p.e1006351-e1006351</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Chang C-F, Chang Y-T, Millington G, Brugmann SA (2016) Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline. PLoS Genet 12(11): e1006351. doi:10.1371/journal.pgen.1006351</rights><rights>2016 Chang et al 2016 Chang et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Chang C-F, Chang Y-T, Millington G, Brugmann SA (2016) Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline. PLoS Genet 12(11): e1006351. doi:10.1371/journal.pgen.1006351</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c759t-90ac74d1c78b126f79d9831097dd5a240f5e8000ff6aeeb7db9f124b939661173</citedby><cites>FETCH-LOGICAL-c759t-90ac74d1c78b126f79d9831097dd5a240f5e8000ff6aeeb7db9f124b939661173</cites><orcidid>0000-0001-6941-6416 ; 0000-0002-3884-7157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5089743/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5089743/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27802276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wilkie, Andrew O. M.</contributor><creatorcontrib>Chang, Ching-Fang</creatorcontrib><creatorcontrib>Chang, Ya-Ting</creatorcontrib><creatorcontrib>Millington, Grethel</creatorcontrib><creatorcontrib>Brugmann, Samantha A</creatorcontrib><title>Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Ciliopathies represent a broad class of disorders that affect multiple organ systems. The craniofacial complex is among those most severely affected when primary cilia are not functional. We previously reported that loss of primary cilia on cranial neural crest cells, via a conditional knockout of the intraflagellar transport protein KIF3a, resulted in midfacial widening due to a gain of Hedgehog (HH) activity. Here, we examine the molecular mechanism of how a loss of primary cilia can produce facial phenotypes associated with a gain of HH function. We show that loss of intraflagellar transport proteins (KIF3a or IFT88) caused aberrant GLI processing such that the amount of GLI3FL and GLI2FL was increased, thus skewing the ratio of GLIFL to GLIR in favor of the FL isoform. Genetic addition of GLI3R partially rescued the ciliopathic midfacial widening. Interestingly, despite several previous studies suggesting midfacial development relies heavily on GLI3R activity, the conditional loss of GLI3 alone did not reproduce the ciliopathic phenotype. Only the combined loss of both GLI2 and GLI3 was able to phenocopy the ciliopathic midfacial appearance. Our findings suggest that ciliopathic facial phenotypes are generated via loss of both GLI3R and GLI2R and that this pathology occurs via a de-repression mechanism. Furthermore, these studies suggest a novel role for GLI2R in craniofacial development.</description><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Children & youth</subject><subject>Cilia - genetics</subject><subject>Cilia - pathology</subject><subject>Ciliopathies - genetics</subject><subject>Ciliopathies - pathology</subject><subject>Developmental biology</subject><subject>Experiments</subject><subject>Face - embryology</subject><subject>Face - pathology</subject><subject>Funding</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genotype & phenotype</subject><subject>Kinesin - genetics</subject><subject>Kruppel-Like Transcription Factors - genetics</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Observations</subject><subject>Pediatrics</subject><subject>Phenotype</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Modification, Translational - genetics</subject><subject>Protein-protein interactions</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Rodents</subject><subject>Signal Transduction - genetics</subject><subject>Studies</subject><subject>Zinc Finger Protein Gli2</subject><subject>Zinc Finger Protein Gli3</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9Fu0zAUhiMEYmPwBggiISG4aLETO7ZvJk2FjUqFoQ24tRznuPWUxpmdTPD2ODSbGjQJkC_iHH__b_scnyR5jtEc5wy_u3K9b1Q9b9fQzDFCRU7xg-QQU5rPGEHk4d78IHkSwhVCOeWCPU4OMsZRlrHiMGkXXjXWGaWtqtOFra1rVbexENILuIEYu2xBW2N1_L_urYctNF1IjfPp2WqZfvGuA9uEtOq9bdbp-yiqXTtAqTNpt4H0dOf9yVa1beBp8sioOsCz8XuUfDv98HXxcbY6P1suTlYzzajoZgIpzUiFNeMlzgrDRCV4jpFgVUVVRpChwBFCxhQKoGRVKQzOSClyURQYs_woebnzbWsX5JisIDEnoqCM0yISyx1ROXUlW2-3yv-UTln5O-D8WirfWV2DZMBxFTcliAOpylJpobHhxiBhiiJD0et43K0vt1DpeH2v6onpdKWxG7l2N5KiWBGSR4M3o4F31z2ETm5t0FDXqgHXD-emgjA0lPnvaE6EYBRlEX31B3p_IkZqreJdbWNcPKIeTOUJYTxjWcFppOb3UHFUsLXaNWBsjE8EbyeCyHTwo1urPgS5vLz4D_bzv7Pn36fs6z12E99ztwmu7jvrmjAFyQ7U3oXgwdzVDiM59Ntt5uTQb3Lstyh7sV_3O9Ftg-W_ANQ_JCI</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Chang, Ching-Fang</creator><creator>Chang, Ya-Ting</creator><creator>Millington, Grethel</creator><creator>Brugmann, Samantha A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6941-6416</orcidid><orcidid>https://orcid.org/0000-0002-3884-7157</orcidid></search><sort><creationdate>201611</creationdate><title>Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline</title><author>Chang, Ching-Fang ; Chang, Ya-Ting ; Millington, Grethel ; Brugmann, Samantha A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c759t-90ac74d1c78b126f79d9831097dd5a240f5e8000ff6aeeb7db9f124b939661173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Children & youth</topic><topic>Cilia - genetics</topic><topic>Cilia - pathology</topic><topic>Ciliopathies - genetics</topic><topic>Ciliopathies - pathology</topic><topic>Developmental biology</topic><topic>Experiments</topic><topic>Face - embryology</topic><topic>Face - pathology</topic><topic>Funding</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genotype & phenotype</topic><topic>Kinesin - genetics</topic><topic>Kruppel-Like Transcription Factors - genetics</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Observations</topic><topic>Pediatrics</topic><topic>Phenotype</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Modification, Translational - genetics</topic><topic>Protein-protein interactions</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Rodents</topic><topic>Signal Transduction - genetics</topic><topic>Studies</topic><topic>Zinc Finger Protein Gli2</topic><topic>Zinc Finger Protein Gli3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Ching-Fang</creatorcontrib><creatorcontrib>Chang, Ya-Ting</creatorcontrib><creatorcontrib>Millington, Grethel</creatorcontrib><creatorcontrib>Brugmann, Samantha A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Ching-Fang</au><au>Chang, Ya-Ting</au><au>Millington, Grethel</au><au>Brugmann, Samantha A</au><au>Wilkie, Andrew O. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2016-11</date><risdate>2016</risdate><volume>12</volume><issue>11</issue><spage>e1006351</spage><epage>e1006351</epage><pages>e1006351-e1006351</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Ciliopathies represent a broad class of disorders that affect multiple organ systems. The craniofacial complex is among those most severely affected when primary cilia are not functional. We previously reported that loss of primary cilia on cranial neural crest cells, via a conditional knockout of the intraflagellar transport protein KIF3a, resulted in midfacial widening due to a gain of Hedgehog (HH) activity. Here, we examine the molecular mechanism of how a loss of primary cilia can produce facial phenotypes associated with a gain of HH function. We show that loss of intraflagellar transport proteins (KIF3a or IFT88) caused aberrant GLI processing such that the amount of GLI3FL and GLI2FL was increased, thus skewing the ratio of GLIFL to GLIR in favor of the FL isoform. Genetic addition of GLI3R partially rescued the ciliopathic midfacial widening. Interestingly, despite several previous studies suggesting midfacial development relies heavily on GLI3R activity, the conditional loss of GLI3 alone did not reproduce the ciliopathic phenotype. Only the combined loss of both GLI2 and GLI3 was able to phenocopy the ciliopathic midfacial appearance. Our findings suggest that ciliopathic facial phenotypes are generated via loss of both GLI3R and GLI2R and that this pathology occurs via a de-repression mechanism. Furthermore, these studies suggest a novel role for GLI2R in craniofacial development.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27802276</pmid><doi>10.1371/journal.pgen.1006351</doi><orcidid>https://orcid.org/0000-0001-6941-6416</orcidid><orcidid>https://orcid.org/0000-0002-3884-7157</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2016-11, Vol.12 (11), p.e1006351-e1006351 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1849657856 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Biology and Life Sciences Children & youth Cilia - genetics Cilia - pathology Ciliopathies - genetics Ciliopathies - pathology Developmental biology Experiments Face - embryology Face - pathology Funding Gene Expression Regulation, Developmental Genotype & phenotype Kinesin - genetics Kruppel-Like Transcription Factors - genetics Mice Mice, Transgenic Nerve Tissue Proteins - genetics Observations Pediatrics Phenotype Protein Isoforms - genetics Protein Modification, Translational - genetics Protein-protein interactions Proteins Research and Analysis Methods Rodents Signal Transduction - genetics Studies Zinc Finger Protein Gli2 Zinc Finger Protein Gli3 |
title | Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Craniofacial%20Ciliopathies%20Reveal%20Specific%20Requirements%20for%20GLI%20Proteins%20during%20Development%20of%20the%20Facial%20Midline&rft.jtitle=PLoS%20genetics&rft.au=Chang,%20Ching-Fang&rft.date=2016-11&rft.volume=12&rft.issue=11&rft.spage=e1006351&rft.epage=e1006351&rft.pages=e1006351-e1006351&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1006351&rft_dat=%3Cgale_plos_%3EA478272685%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1849657856&rft_id=info:pmid/27802276&rft_galeid=A478272685&rft_doaj_id=oai_doaj_org_article_7e81d240408e4dbbac9c1f8ff09f6620&rfr_iscdi=true |