Drivers of Inter-individual Variation in Dengue Viral Load Dynamics
Dengue is a vector-borne viral disease of humans that endemically circulates in many tropical and subtropical regions worldwide. Infection with dengue can result in a range of disease outcomes. A considerable amount of research has sought to improve our understanding of this variation in disease out...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2016-11, Vol.12 (11), p.e1005194-e1005194 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1005194 |
---|---|
container_issue | 11 |
container_start_page | e1005194 |
container_title | PLoS computational biology |
container_volume | 12 |
creator | Ben-Shachar, Rotem Schmidler, Scott Koelle, Katia |
description | Dengue is a vector-borne viral disease of humans that endemically circulates in many tropical and subtropical regions worldwide. Infection with dengue can result in a range of disease outcomes. A considerable amount of research has sought to improve our understanding of this variation in disease outcomes and to identify predictors of severe disease. Contributing to this research, patterns of viral load in dengue infected patients have been quantified, with analyses indicating that peak viral load levels, rates of viral load decline, and time to peak viremia are useful predictors of severe disease. Here, we take a complementary approach to understanding patterns of clinical manifestation and inter-individual variation in viral load dynamics. Specifically, we statistically fit mathematical within-host models of dengue to individual-level viral load data to test virological and immunological hypotheses explaining inter-individual variation in dengue viral load. We choose between alternative models using model selection criteria to determine which hypotheses are best supported by the data. We first show that the cellular immune response plays an important role in regulating viral load in secondary dengue infections. We then provide statistical support for the process of antibody-dependent enhancement (but not original antigenic sin) in the development of severe disease in secondary dengue infections. Finally, we show statistical support for serotype-specific differences in viral infectivity rates, with infectivity rates of dengue serotypes 2 and 3 exceeding those of serotype 1. These results contribute to our understanding of dengue viral load patterns and their relationship to the development of severe dengue disease. They further have implications for understanding how dengue transmissibility may depend on the immune status of infected individuals and the identity of the infecting serotype. |
doi_str_mv | 10.1371/journal.pcbi.1005194 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1849657286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478272476</galeid><doaj_id>oai_doaj_org_article_1e52c3dc614345c09fb590c5ddd0076c</doaj_id><sourcerecordid>A478272476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c694t-119a65ffaddbf52bd6ea2e904a42f0f8706c21b202dff1ddd5ca208f5203de753</originalsourceid><addsrcrecordid>eNqVksmO1DAQhiMEYhZ4AwSRuMAhjdc4uSCNullaaoHEMlfL8RLcSts9dtJi3n4cOjOaoDmAfLBV_uqv-u3KshcQLCBm8N3WD8GJbrGXjV1AACisyaPsFFKKC4Zp9fje-SQ7i3ELQDrW5dPsBLGKUkjxabZcBXvQIebe5GvX61BYp-zBqkF0-aUIVvTWu9y6fKVdO-j80oZ0s_FC5atrJ3ZWxmfZEyO6qJ9P-3n28-OHH8vPxebrp_XyYlPIsiZ9AWEtSmqMUKoxFDWq1ALpGhBBkAGmYqCUCDYIIGUMVEpRKRCoEgqw0ozi8-zVUXff-cgn_5HDitQlZagqE7E-EsqLLd8HuxPhmnth-Z-ADy0Xobey0xxqiiRWsoQEEypBbRpaA0lTXQBYKZPW-6na0Oy0ktr1yflMdH7j7C_e-gOnEOLUSxJ4MwkEfzXo2POdjVJ3nXDaD2PftCYM0OpfUAJZXZGSJfT1X-jDDzFRrUherTM-tShHUX5BWIUYImykFg9QaSmd_tU7bWyKzxLezhIS0-vffSuGGPn6-7f_YL_MWXJkZfAxBm3unhkCPk77rUk-Tjufpj2lvbz_RXdJt-ONbwCcTvlu</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1849657286</pqid></control><display><type>article</type><title>Drivers of Inter-individual Variation in Dengue Viral Load Dynamics</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Ben-Shachar, Rotem ; Schmidler, Scott ; Koelle, Katia</creator><contributor>Ferguson, Neil M.</contributor><creatorcontrib>Ben-Shachar, Rotem ; Schmidler, Scott ; Koelle, Katia ; Ferguson, Neil M.</creatorcontrib><description>Dengue is a vector-borne viral disease of humans that endemically circulates in many tropical and subtropical regions worldwide. Infection with dengue can result in a range of disease outcomes. A considerable amount of research has sought to improve our understanding of this variation in disease outcomes and to identify predictors of severe disease. Contributing to this research, patterns of viral load in dengue infected patients have been quantified, with analyses indicating that peak viral load levels, rates of viral load decline, and time to peak viremia are useful predictors of severe disease. Here, we take a complementary approach to understanding patterns of clinical manifestation and inter-individual variation in viral load dynamics. Specifically, we statistically fit mathematical within-host models of dengue to individual-level viral load data to test virological and immunological hypotheses explaining inter-individual variation in dengue viral load. We choose between alternative models using model selection criteria to determine which hypotheses are best supported by the data. We first show that the cellular immune response plays an important role in regulating viral load in secondary dengue infections. We then provide statistical support for the process of antibody-dependent enhancement (but not original antigenic sin) in the development of severe disease in secondary dengue infections. Finally, we show statistical support for serotype-specific differences in viral infectivity rates, with infectivity rates of dengue serotypes 2 and 3 exceeding those of serotype 1. These results contribute to our understanding of dengue viral load patterns and their relationship to the development of severe dengue disease. They further have implications for understanding how dengue transmissibility may depend on the immune status of infected individuals and the identity of the infecting serotype.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1005194</identifier><identifier>PMID: 27855153</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adolescent ; Adult ; Antiretroviral drugs ; Bioinformatics ; Biology ; Biology and Life Sciences ; Computer Simulation ; Dengue - diagnosis ; Dengue - epidemiology ; Dengue - virology ; Dengue fever ; Dengue virus ; Dengue Virus - classification ; Dengue Virus - isolation & purification ; Dengue Virus - physiology ; Disease transmission ; Estimates ; Female ; Funding ; Health aspects ; Humans ; Hypotheses ; Infections ; Male ; Medicine and Health Sciences ; Middle Aged ; Models, Statistical ; Observations ; Prevalence ; Reproducibility of Results ; Research and Analysis Methods ; Risk Factors ; Sensitivity and Specificity ; Species Specificity ; Studies ; Vectors (Biology) ; Vietnam - epidemiology ; Viral Load - statistics & numerical data ; Viruses ; Young Adult</subject><ispartof>PLoS computational biology, 2016-11, Vol.12 (11), p.e1005194-e1005194</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ben-Shachar R, Schmidler S, Koelle K (2016) Drivers of Inter-individual Variation in Dengue Viral Load Dynamics. PLoS Comput Biol 12(11): e1005194. doi:10.1371/journal.pcbi.1005194</rights><rights>2016 Ben-Shachar et al 2016 Ben-Shachar et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ben-Shachar R, Schmidler S, Koelle K (2016) Drivers of Inter-individual Variation in Dengue Viral Load Dynamics. PLoS Comput Biol 12(11): e1005194. doi:10.1371/journal.pcbi.1005194</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c694t-119a65ffaddbf52bd6ea2e904a42f0f8706c21b202dff1ddd5ca208f5203de753</citedby><cites>FETCH-LOGICAL-c694t-119a65ffaddbf52bd6ea2e904a42f0f8706c21b202dff1ddd5ca208f5203de753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5113863/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5113863/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27855153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ferguson, Neil M.</contributor><creatorcontrib>Ben-Shachar, Rotem</creatorcontrib><creatorcontrib>Schmidler, Scott</creatorcontrib><creatorcontrib>Koelle, Katia</creatorcontrib><title>Drivers of Inter-individual Variation in Dengue Viral Load Dynamics</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Dengue is a vector-borne viral disease of humans that endemically circulates in many tropical and subtropical regions worldwide. Infection with dengue can result in a range of disease outcomes. A considerable amount of research has sought to improve our understanding of this variation in disease outcomes and to identify predictors of severe disease. Contributing to this research, patterns of viral load in dengue infected patients have been quantified, with analyses indicating that peak viral load levels, rates of viral load decline, and time to peak viremia are useful predictors of severe disease. Here, we take a complementary approach to understanding patterns of clinical manifestation and inter-individual variation in viral load dynamics. Specifically, we statistically fit mathematical within-host models of dengue to individual-level viral load data to test virological and immunological hypotheses explaining inter-individual variation in dengue viral load. We choose between alternative models using model selection criteria to determine which hypotheses are best supported by the data. We first show that the cellular immune response plays an important role in regulating viral load in secondary dengue infections. We then provide statistical support for the process of antibody-dependent enhancement (but not original antigenic sin) in the development of severe disease in secondary dengue infections. Finally, we show statistical support for serotype-specific differences in viral infectivity rates, with infectivity rates of dengue serotypes 2 and 3 exceeding those of serotype 1. These results contribute to our understanding of dengue viral load patterns and their relationship to the development of severe dengue disease. They further have implications for understanding how dengue transmissibility may depend on the immune status of infected individuals and the identity of the infecting serotype.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Antiretroviral drugs</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Computer Simulation</subject><subject>Dengue - diagnosis</subject><subject>Dengue - epidemiology</subject><subject>Dengue - virology</subject><subject>Dengue fever</subject><subject>Dengue virus</subject><subject>Dengue Virus - classification</subject><subject>Dengue Virus - isolation & purification</subject><subject>Dengue Virus - physiology</subject><subject>Disease transmission</subject><subject>Estimates</subject><subject>Female</subject><subject>Funding</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Infections</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>Observations</subject><subject>Prevalence</subject><subject>Reproducibility of Results</subject><subject>Research and Analysis Methods</subject><subject>Risk Factors</subject><subject>Sensitivity and Specificity</subject><subject>Species Specificity</subject><subject>Studies</subject><subject>Vectors (Biology)</subject><subject>Vietnam - epidemiology</subject><subject>Viral Load - statistics & numerical data</subject><subject>Viruses</subject><subject>Young Adult</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVksmO1DAQhiMEYhZ4AwSRuMAhjdc4uSCNullaaoHEMlfL8RLcSts9dtJi3n4cOjOaoDmAfLBV_uqv-u3KshcQLCBm8N3WD8GJbrGXjV1AACisyaPsFFKKC4Zp9fje-SQ7i3ELQDrW5dPsBLGKUkjxabZcBXvQIebe5GvX61BYp-zBqkF0-aUIVvTWu9y6fKVdO-j80oZ0s_FC5atrJ3ZWxmfZEyO6qJ9P-3n28-OHH8vPxebrp_XyYlPIsiZ9AWEtSmqMUKoxFDWq1ALpGhBBkAGmYqCUCDYIIGUMVEpRKRCoEgqw0ozi8-zVUXff-cgn_5HDitQlZagqE7E-EsqLLd8HuxPhmnth-Z-ADy0Xobey0xxqiiRWsoQEEypBbRpaA0lTXQBYKZPW-6na0Oy0ktr1yflMdH7j7C_e-gOnEOLUSxJ4MwkEfzXo2POdjVJ3nXDaD2PftCYM0OpfUAJZXZGSJfT1X-jDDzFRrUherTM-tShHUX5BWIUYImykFg9QaSmd_tU7bWyKzxLezhIS0-vffSuGGPn6-7f_YL_MWXJkZfAxBm3unhkCPk77rUk-Tjufpj2lvbz_RXdJt-ONbwCcTvlu</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Ben-Shachar, Rotem</creator><creator>Schmidler, Scott</creator><creator>Koelle, Katia</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7U9</scope><scope>C1K</scope><scope>F1W</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20161101</creationdate><title>Drivers of Inter-individual Variation in Dengue Viral Load Dynamics</title><author>Ben-Shachar, Rotem ; Schmidler, Scott ; Koelle, Katia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c694t-119a65ffaddbf52bd6ea2e904a42f0f8706c21b202dff1ddd5ca208f5203de753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Antiretroviral drugs</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Computer Simulation</topic><topic>Dengue - diagnosis</topic><topic>Dengue - epidemiology</topic><topic>Dengue - virology</topic><topic>Dengue fever</topic><topic>Dengue virus</topic><topic>Dengue Virus - classification</topic><topic>Dengue Virus - isolation & purification</topic><topic>Dengue Virus - physiology</topic><topic>Disease transmission</topic><topic>Estimates</topic><topic>Female</topic><topic>Funding</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Infections</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>Observations</topic><topic>Prevalence</topic><topic>Reproducibility of Results</topic><topic>Research and Analysis Methods</topic><topic>Risk Factors</topic><topic>Sensitivity and Specificity</topic><topic>Species Specificity</topic><topic>Studies</topic><topic>Vectors (Biology)</topic><topic>Vietnam - epidemiology</topic><topic>Viral Load - statistics & numerical data</topic><topic>Viruses</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben-Shachar, Rotem</creatorcontrib><creatorcontrib>Schmidler, Scott</creatorcontrib><creatorcontrib>Koelle, Katia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben-Shachar, Rotem</au><au>Schmidler, Scott</au><au>Koelle, Katia</au><au>Ferguson, Neil M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drivers of Inter-individual Variation in Dengue Viral Load Dynamics</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>12</volume><issue>11</issue><spage>e1005194</spage><epage>e1005194</epage><pages>e1005194-e1005194</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Dengue is a vector-borne viral disease of humans that endemically circulates in many tropical and subtropical regions worldwide. Infection with dengue can result in a range of disease outcomes. A considerable amount of research has sought to improve our understanding of this variation in disease outcomes and to identify predictors of severe disease. Contributing to this research, patterns of viral load in dengue infected patients have been quantified, with analyses indicating that peak viral load levels, rates of viral load decline, and time to peak viremia are useful predictors of severe disease. Here, we take a complementary approach to understanding patterns of clinical manifestation and inter-individual variation in viral load dynamics. Specifically, we statistically fit mathematical within-host models of dengue to individual-level viral load data to test virological and immunological hypotheses explaining inter-individual variation in dengue viral load. We choose between alternative models using model selection criteria to determine which hypotheses are best supported by the data. We first show that the cellular immune response plays an important role in regulating viral load in secondary dengue infections. We then provide statistical support for the process of antibody-dependent enhancement (but not original antigenic sin) in the development of severe disease in secondary dengue infections. Finally, we show statistical support for serotype-specific differences in viral infectivity rates, with infectivity rates of dengue serotypes 2 and 3 exceeding those of serotype 1. These results contribute to our understanding of dengue viral load patterns and their relationship to the development of severe dengue disease. They further have implications for understanding how dengue transmissibility may depend on the immune status of infected individuals and the identity of the infecting serotype.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27855153</pmid><doi>10.1371/journal.pcbi.1005194</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2016-11, Vol.12 (11), p.e1005194-e1005194 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1849657286 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Adolescent Adult Antiretroviral drugs Bioinformatics Biology Biology and Life Sciences Computer Simulation Dengue - diagnosis Dengue - epidemiology Dengue - virology Dengue fever Dengue virus Dengue Virus - classification Dengue Virus - isolation & purification Dengue Virus - physiology Disease transmission Estimates Female Funding Health aspects Humans Hypotheses Infections Male Medicine and Health Sciences Middle Aged Models, Statistical Observations Prevalence Reproducibility of Results Research and Analysis Methods Risk Factors Sensitivity and Specificity Species Specificity Studies Vectors (Biology) Vietnam - epidemiology Viral Load - statistics & numerical data Viruses Young Adult |
title | Drivers of Inter-individual Variation in Dengue Viral Load Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drivers%20of%20Inter-individual%20Variation%20in%20Dengue%20Viral%20Load%20Dynamics&rft.jtitle=PLoS%20computational%20biology&rft.au=Ben-Shachar,%20Rotem&rft.date=2016-11-01&rft.volume=12&rft.issue=11&rft.spage=e1005194&rft.epage=e1005194&rft.pages=e1005194-e1005194&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1005194&rft_dat=%3Cgale_plos_%3EA478272476%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1849657286&rft_id=info:pmid/27855153&rft_galeid=A478272476&rft_doaj_id=oai_doaj_org_article_1e52c3dc614345c09fb590c5ddd0076c&rfr_iscdi=true |