β-Glucans and Resistant Starch Alter the Fermentation of Recalcitrant Fibers in Growing Pigs

Interactions among dietary ingredients are often assumed non-existent when evaluating the nutritive value and health effects of dietary fiber. Specific fibers can distinctly affect digestive processes; therefore, digestibility and fermentability of the complete diet may depend on fiber types present...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016, Vol.11 (12), p.e0167624-e0167624
Hauptverfasser: de Vries, Sonja, Gerrits, Walter J J, Kabel, Mirjam A, Vasanthan, Thava, Zijlstra, Ruurd T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0167624
container_issue 12
container_start_page e0167624
container_title PloS one
container_volume 11
creator de Vries, Sonja
Gerrits, Walter J J
Kabel, Mirjam A
Vasanthan, Thava
Zijlstra, Ruurd T
description Interactions among dietary ingredients are often assumed non-existent when evaluating the nutritive value and health effects of dietary fiber. Specific fibers can distinctly affect digestive processes; therefore, digestibility and fermentability of the complete diet may depend on fiber types present. This study aimed to evaluate the effects of readily fermentable fibers (β-glucans and resistant starch) on the degradation of feed ingredients containing more persistent, recalcitrant, fibers. Six semi-synthetic diets with recalcitrant fibers from rapeseed meal (pectic polysaccharides, xyloglucans, and cellulose) or corn distillers dried grain with solubles (DDGS; (glucurono)arabinoxylans and cellulose) with or without inclusion of β-glucans (6%) or retrograded tapioca (40%) substituted for corn starch were formulated. Six ileal-cannulated pigs (BW 28±1.4 kg) were assigned to the diets according to a 6×6 Latin square. β-glucan-extract increased apparent total tract digestibility (ATTD) of non-glucosyl polysaccharides (accounting for ~40% of the fiber-fraction) from rapeseed meal (6%-units, P10%-units, P
doi_str_mv 10.1371/journal.pone.0167624
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1845404347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2c5ec23b1c3140b4a7cb696323f40147</doaj_id><sourcerecordid>4268463781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-b6745bbe98cc97c18e265a5bfb3272d518032732652d63f7fe4c3254d2fdd3d03</originalsourceid><addsrcrecordid>eNptUtuKFDEQbURxL_oHog2-7EuPuXa6fRCWxRkXFhQvjxKSdLonQyYZk7SDv-WH-E1mpnuXXfGpiqpzDlWHUxQvIFhAzOCbjR-DE3ax804vAKxZjcij4hS2GFU1Avjxvf6kOItxAwDFTV0_LU4QayFsUXNafP_zu1rZUQkXS-G68rOOJibhUvkliaDW5aVNOpRprculDlvtkkjGu9L3GaqEVSaFA3pppA6xNK5cBb83big_mSE-K570wkb9fK7nxbfl-69XH6qbj6vrq8ubSlHGUiVrRqiUum2UapmCjUY1FVT2EiOGOgobkBuch6ircc96TRRGlHSo7zrcAXxevJp0d9ZHPjsTOWwIJYBgwjLiekJ0Xmz4LpitCL-4F4YfBz4MXIRklNUcKaoVwhIqDAmQRDAl67bGCPcEwKPW20lrLwbt8q_acZfNMvEoaI0MB_H9GLizh7IbZeQUgrZBmfxuPnWUW92p7GgQ9sFFDzfOrPngf2Y-phC1WeBiFgj-x6hj4lsTlbZWOO3H6ekGtU3bZOjrf6D_t4ZMKBV8jEH3d8dAwA9Ru2XxQ9T4HLVMe3n_kTvSbbbwX7iJ08E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845404347</pqid></control><display><type>article</type><title>β-Glucans and Resistant Starch Alter the Fermentation of Recalcitrant Fibers in Growing Pigs</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>de Vries, Sonja ; Gerrits, Walter J J ; Kabel, Mirjam A ; Vasanthan, Thava ; Zijlstra, Ruurd T</creator><contributor>Weir, Tiffany L.</contributor><creatorcontrib>de Vries, Sonja ; Gerrits, Walter J J ; Kabel, Mirjam A ; Vasanthan, Thava ; Zijlstra, Ruurd T ; Weir, Tiffany L.</creatorcontrib><description>Interactions among dietary ingredients are often assumed non-existent when evaluating the nutritive value and health effects of dietary fiber. Specific fibers can distinctly affect digestive processes; therefore, digestibility and fermentability of the complete diet may depend on fiber types present. This study aimed to evaluate the effects of readily fermentable fibers (β-glucans and resistant starch) on the degradation of feed ingredients containing more persistent, recalcitrant, fibers. Six semi-synthetic diets with recalcitrant fibers from rapeseed meal (pectic polysaccharides, xyloglucans, and cellulose) or corn distillers dried grain with solubles (DDGS; (glucurono)arabinoxylans and cellulose) with or without inclusion of β-glucans (6%) or retrograded tapioca (40%) substituted for corn starch were formulated. Six ileal-cannulated pigs (BW 28±1.4 kg) were assigned to the diets according to a 6×6 Latin square. β-glucan-extract increased apparent total tract digestibility (ATTD) of non-glucosyl polysaccharides (accounting for ~40% of the fiber-fraction) from rapeseed meal (6%-units, P&lt;0.001), but did not affect non-glucosyl polysaccharides from DDGS. Retrograded tapioca reduced ATTD of non-glucosyl polysaccharides from rapeseed meal and DDGS (&gt;10%-units, P&lt;0.001), indicating that the large amount of resistant starch entering the hindgut was preferentially degraded over recalcitrant fibers from rapeseed meal and DDGS, possibly related to reduced hindgut-retention time following the increased intestinal bulk. Fermentation of fiber sources was not only dependent on fiber characteristics, but also on the presence of other fibers in the diet. Hence, interactions in the gastrointestinal tract among fibrous feed ingredients should be considered when evaluating their nutritive value.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0167624</identifier><identifier>PMID: 27911928</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal Feed ; Animal Nutrition ; Animals ; Arabinoxylans ; Barley ; beta-Glucans - chemistry ; beta-Glucans - pharmacology ; Biology and Life Sciences ; Cellulose ; Cellulose fibers ; Corn ; Diervoeding ; Diet ; Dietary fiber ; Dietary Fiber - pharmacology ; Digestibility ; Digestion - physiology ; Enzymes ; Feces ; Feeds ; Fermentation ; Food ; Food Chemistry ; Food Chemistry Group ; Gastrointestinal tract ; Glucan ; Grain ; Hindgut ; Hogs ; Ingredients ; Intestine ; Leerstoelgroep Diervoeding ; Leerstoelgroep Levensmiddelenchemie ; Levensmiddelenchemie ; Medicine and Health Sciences ; Microbiota ; Nutrition research ; Nutritive Value ; Physical Sciences ; Polysaccharides ; Rapeseed ; Research and Analysis Methods ; Retention ; Retention time ; Saccharides ; Starch ; Starch - chemistry ; Starch - pharmacology ; Swine ; Tapioca ; VLAG ; WIAS ; β-Glucan</subject><ispartof>PloS one, 2016, Vol.11 (12), p.e0167624-e0167624</ispartof><rights>2016 de Vries et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 de Vries et al 2016 de Vries et al</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-b6745bbe98cc97c18e265a5bfb3272d518032732652d63f7fe4c3254d2fdd3d03</citedby><cites>FETCH-LOGICAL-c577t-b6745bbe98cc97c18e265a5bfb3272d518032732652d63f7fe4c3254d2fdd3d03</cites><orcidid>0000-0002-3842-8411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5135129/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5135129/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,4022,23865,27922,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27911928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Weir, Tiffany L.</contributor><creatorcontrib>de Vries, Sonja</creatorcontrib><creatorcontrib>Gerrits, Walter J J</creatorcontrib><creatorcontrib>Kabel, Mirjam A</creatorcontrib><creatorcontrib>Vasanthan, Thava</creatorcontrib><creatorcontrib>Zijlstra, Ruurd T</creatorcontrib><title>β-Glucans and Resistant Starch Alter the Fermentation of Recalcitrant Fibers in Growing Pigs</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Interactions among dietary ingredients are often assumed non-existent when evaluating the nutritive value and health effects of dietary fiber. Specific fibers can distinctly affect digestive processes; therefore, digestibility and fermentability of the complete diet may depend on fiber types present. This study aimed to evaluate the effects of readily fermentable fibers (β-glucans and resistant starch) on the degradation of feed ingredients containing more persistent, recalcitrant, fibers. Six semi-synthetic diets with recalcitrant fibers from rapeseed meal (pectic polysaccharides, xyloglucans, and cellulose) or corn distillers dried grain with solubles (DDGS; (glucurono)arabinoxylans and cellulose) with or without inclusion of β-glucans (6%) or retrograded tapioca (40%) substituted for corn starch were formulated. Six ileal-cannulated pigs (BW 28±1.4 kg) were assigned to the diets according to a 6×6 Latin square. β-glucan-extract increased apparent total tract digestibility (ATTD) of non-glucosyl polysaccharides (accounting for ~40% of the fiber-fraction) from rapeseed meal (6%-units, P&lt;0.001), but did not affect non-glucosyl polysaccharides from DDGS. Retrograded tapioca reduced ATTD of non-glucosyl polysaccharides from rapeseed meal and DDGS (&gt;10%-units, P&lt;0.001), indicating that the large amount of resistant starch entering the hindgut was preferentially degraded over recalcitrant fibers from rapeseed meal and DDGS, possibly related to reduced hindgut-retention time following the increased intestinal bulk. Fermentation of fiber sources was not only dependent on fiber characteristics, but also on the presence of other fibers in the diet. Hence, interactions in the gastrointestinal tract among fibrous feed ingredients should be considered when evaluating their nutritive value.</description><subject>Animal Feed</subject><subject>Animal Nutrition</subject><subject>Animals</subject><subject>Arabinoxylans</subject><subject>Barley</subject><subject>beta-Glucans - chemistry</subject><subject>beta-Glucans - pharmacology</subject><subject>Biology and Life Sciences</subject><subject>Cellulose</subject><subject>Cellulose fibers</subject><subject>Corn</subject><subject>Diervoeding</subject><subject>Diet</subject><subject>Dietary fiber</subject><subject>Dietary Fiber - pharmacology</subject><subject>Digestibility</subject><subject>Digestion - physiology</subject><subject>Enzymes</subject><subject>Feces</subject><subject>Feeds</subject><subject>Fermentation</subject><subject>Food</subject><subject>Food Chemistry</subject><subject>Food Chemistry Group</subject><subject>Gastrointestinal tract</subject><subject>Glucan</subject><subject>Grain</subject><subject>Hindgut</subject><subject>Hogs</subject><subject>Ingredients</subject><subject>Intestine</subject><subject>Leerstoelgroep Diervoeding</subject><subject>Leerstoelgroep Levensmiddelenchemie</subject><subject>Levensmiddelenchemie</subject><subject>Medicine and Health Sciences</subject><subject>Microbiota</subject><subject>Nutrition research</subject><subject>Nutritive Value</subject><subject>Physical Sciences</subject><subject>Polysaccharides</subject><subject>Rapeseed</subject><subject>Research and Analysis Methods</subject><subject>Retention</subject><subject>Retention time</subject><subject>Saccharides</subject><subject>Starch</subject><subject>Starch - chemistry</subject><subject>Starch - pharmacology</subject><subject>Swine</subject><subject>Tapioca</subject><subject>VLAG</subject><subject>WIAS</subject><subject>β-Glucan</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUtuKFDEQbURxL_oHog2-7EuPuXa6fRCWxRkXFhQvjxKSdLonQyYZk7SDv-WH-E1mpnuXXfGpiqpzDlWHUxQvIFhAzOCbjR-DE3ax804vAKxZjcij4hS2GFU1Avjxvf6kOItxAwDFTV0_LU4QayFsUXNafP_zu1rZUQkXS-G68rOOJibhUvkliaDW5aVNOpRprculDlvtkkjGu9L3GaqEVSaFA3pppA6xNK5cBb83big_mSE-K570wkb9fK7nxbfl-69XH6qbj6vrq8ubSlHGUiVrRqiUum2UapmCjUY1FVT2EiOGOgobkBuch6ircc96TRRGlHSo7zrcAXxevJp0d9ZHPjsTOWwIJYBgwjLiekJ0Xmz4LpitCL-4F4YfBz4MXIRklNUcKaoVwhIqDAmQRDAl67bGCPcEwKPW20lrLwbt8q_acZfNMvEoaI0MB_H9GLizh7IbZeQUgrZBmfxuPnWUW92p7GgQ9sFFDzfOrPngf2Y-phC1WeBiFgj-x6hj4lsTlbZWOO3H6ekGtU3bZOjrf6D_t4ZMKBV8jEH3d8dAwA9Ru2XxQ9T4HLVMe3n_kTvSbbbwX7iJ08E</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>de Vries, Sonja</creator><creator>Gerrits, Walter J J</creator><creator>Kabel, Mirjam A</creator><creator>Vasanthan, Thava</creator><creator>Zijlstra, Ruurd T</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>QVL</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3842-8411</orcidid></search><sort><creationdate>2016</creationdate><title>β-Glucans and Resistant Starch Alter the Fermentation of Recalcitrant Fibers in Growing Pigs</title><author>de Vries, Sonja ; Gerrits, Walter J J ; Kabel, Mirjam A ; Vasanthan, Thava ; Zijlstra, Ruurd T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-b6745bbe98cc97c18e265a5bfb3272d518032732652d63f7fe4c3254d2fdd3d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animal Feed</topic><topic>Animal Nutrition</topic><topic>Animals</topic><topic>Arabinoxylans</topic><topic>Barley</topic><topic>beta-Glucans - chemistry</topic><topic>beta-Glucans - pharmacology</topic><topic>Biology and Life Sciences</topic><topic>Cellulose</topic><topic>Cellulose fibers</topic><topic>Corn</topic><topic>Diervoeding</topic><topic>Diet</topic><topic>Dietary fiber</topic><topic>Dietary Fiber - pharmacology</topic><topic>Digestibility</topic><topic>Digestion - physiology</topic><topic>Enzymes</topic><topic>Feces</topic><topic>Feeds</topic><topic>Fermentation</topic><topic>Food</topic><topic>Food Chemistry</topic><topic>Food Chemistry Group</topic><topic>Gastrointestinal tract</topic><topic>Glucan</topic><topic>Grain</topic><topic>Hindgut</topic><topic>Hogs</topic><topic>Ingredients</topic><topic>Intestine</topic><topic>Leerstoelgroep Diervoeding</topic><topic>Leerstoelgroep Levensmiddelenchemie</topic><topic>Levensmiddelenchemie</topic><topic>Medicine and Health Sciences</topic><topic>Microbiota</topic><topic>Nutrition research</topic><topic>Nutritive Value</topic><topic>Physical Sciences</topic><topic>Polysaccharides</topic><topic>Rapeseed</topic><topic>Research and Analysis Methods</topic><topic>Retention</topic><topic>Retention time</topic><topic>Saccharides</topic><topic>Starch</topic><topic>Starch - chemistry</topic><topic>Starch - pharmacology</topic><topic>Swine</topic><topic>Tapioca</topic><topic>VLAG</topic><topic>WIAS</topic><topic>β-Glucan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Vries, Sonja</creatorcontrib><creatorcontrib>Gerrits, Walter J J</creatorcontrib><creatorcontrib>Kabel, Mirjam A</creatorcontrib><creatorcontrib>Vasanthan, Thava</creatorcontrib><creatorcontrib>Zijlstra, Ruurd T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>NARCIS:Publications</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Vries, Sonja</au><au>Gerrits, Walter J J</au><au>Kabel, Mirjam A</au><au>Vasanthan, Thava</au><au>Zijlstra, Ruurd T</au><au>Weir, Tiffany L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>β-Glucans and Resistant Starch Alter the Fermentation of Recalcitrant Fibers in Growing Pigs</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016</date><risdate>2016</risdate><volume>11</volume><issue>12</issue><spage>e0167624</spage><epage>e0167624</epage><pages>e0167624-e0167624</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Interactions among dietary ingredients are often assumed non-existent when evaluating the nutritive value and health effects of dietary fiber. Specific fibers can distinctly affect digestive processes; therefore, digestibility and fermentability of the complete diet may depend on fiber types present. This study aimed to evaluate the effects of readily fermentable fibers (β-glucans and resistant starch) on the degradation of feed ingredients containing more persistent, recalcitrant, fibers. Six semi-synthetic diets with recalcitrant fibers from rapeseed meal (pectic polysaccharides, xyloglucans, and cellulose) or corn distillers dried grain with solubles (DDGS; (glucurono)arabinoxylans and cellulose) with or without inclusion of β-glucans (6%) or retrograded tapioca (40%) substituted for corn starch were formulated. Six ileal-cannulated pigs (BW 28±1.4 kg) were assigned to the diets according to a 6×6 Latin square. β-glucan-extract increased apparent total tract digestibility (ATTD) of non-glucosyl polysaccharides (accounting for ~40% of the fiber-fraction) from rapeseed meal (6%-units, P&lt;0.001), but did not affect non-glucosyl polysaccharides from DDGS. Retrograded tapioca reduced ATTD of non-glucosyl polysaccharides from rapeseed meal and DDGS (&gt;10%-units, P&lt;0.001), indicating that the large amount of resistant starch entering the hindgut was preferentially degraded over recalcitrant fibers from rapeseed meal and DDGS, possibly related to reduced hindgut-retention time following the increased intestinal bulk. Fermentation of fiber sources was not only dependent on fiber characteristics, but also on the presence of other fibers in the diet. Hence, interactions in the gastrointestinal tract among fibrous feed ingredients should be considered when evaluating their nutritive value.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27911928</pmid><doi>10.1371/journal.pone.0167624</doi><orcidid>https://orcid.org/0000-0002-3842-8411</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016, Vol.11 (12), p.e0167624-e0167624
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1845404347
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animal Feed
Animal Nutrition
Animals
Arabinoxylans
Barley
beta-Glucans - chemistry
beta-Glucans - pharmacology
Biology and Life Sciences
Cellulose
Cellulose fibers
Corn
Diervoeding
Diet
Dietary fiber
Dietary Fiber - pharmacology
Digestibility
Digestion - physiology
Enzymes
Feces
Feeds
Fermentation
Food
Food Chemistry
Food Chemistry Group
Gastrointestinal tract
Glucan
Grain
Hindgut
Hogs
Ingredients
Intestine
Leerstoelgroep Diervoeding
Leerstoelgroep Levensmiddelenchemie
Levensmiddelenchemie
Medicine and Health Sciences
Microbiota
Nutrition research
Nutritive Value
Physical Sciences
Polysaccharides
Rapeseed
Research and Analysis Methods
Retention
Retention time
Saccharides
Starch
Starch - chemistry
Starch - pharmacology
Swine
Tapioca
VLAG
WIAS
β-Glucan
title β-Glucans and Resistant Starch Alter the Fermentation of Recalcitrant Fibers in Growing Pigs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B2-Glucans%20and%20Resistant%20Starch%20Alter%20the%20Fermentation%20of%20Recalcitrant%20Fibers%20in%20Growing%20Pigs&rft.jtitle=PloS%20one&rft.au=de%20Vries,%20Sonja&rft.date=2016&rft.volume=11&rft.issue=12&rft.spage=e0167624&rft.epage=e0167624&rft.pages=e0167624-e0167624&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0167624&rft_dat=%3Cproquest_plos_%3E4268463781%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845404347&rft_id=info:pmid/27911928&rft_doaj_id=oai_doaj_org_article_2c5ec23b1c3140b4a7cb696323f40147&rfr_iscdi=true